Metrics¶
NOTE: metrics in this module expect the predictions and ground truth to have the same dimensions for regression and binary classification problems: \((N_{samples}, 1)\). In the case of multiclass classification problems the ground truth is expected to be a 1D tensor with the corresponding classes. See Examples below
We have added the possibility of using the metrics available at the
torchmetrics library. Note
that this library is still in its early versions and therefore this option
should be used with caution. To use torchmetrics
simply import them and
use them as any of the pytorch-widedeep
metrics described below.
from torchmetrics import Accuracy, Precision
accuracy = Accuracy(average=None, num_classes=2)
precision = Precision(average='micro', num_classes=2)
trainer = Trainer(model, objective="binary", metrics=[accuracy, precision])
A functioning example for pytorch-widedeep
using torchmetrics
can be
found in the Examples folder
NOTE: the forward method for all metrics in this
module takes two tensors, y_pred
and y_true
(in that order). Therefore,
we do not include the method in the documentation.
Accuracy ¶
Bases: Metric
Class to calculate the accuracy for both binary and categorical problems
Parameters:
Name | Type | Description | Default |
---|---|---|---|
top_k
|
int
|
Accuracy will be computed using the top k most likely classes in multiclass problems |
1
|
Examples:
>>> import torch
>>>
>>> from pytorch_widedeep.metrics import Accuracy
>>>
>>> acc = Accuracy()
>>> y_true = torch.tensor([0, 1, 0, 1]).view(-1, 1)
>>> y_pred = torch.tensor([[0.3, 0.2, 0.6, 0.7]]).view(-1, 1)
>>> acc(y_pred, y_true)
array(0.5)
>>>
>>> acc = Accuracy(top_k=2)
>>> y_true = torch.tensor([0, 1, 2])
>>> y_pred = torch.tensor([[0.3, 0.5, 0.2], [0.1, 0.1, 0.8], [0.1, 0.5, 0.4]])
>>> acc(y_pred, y_true)
array(0.66666667)
Source code in pytorch_widedeep/metrics.py
48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 |
|
reset ¶
reset()
resets counters to 0
Source code in pytorch_widedeep/metrics.py
84 85 86 87 88 89 |
|
Precision ¶
Bases: Metric
Class to calculate the precision for both binary and categorical problems
Parameters:
Name | Type | Description | Default |
---|---|---|---|
average
|
bool
|
This applies only to multiclass problems. if |
True
|
Examples:
>>> import torch
>>>
>>> from pytorch_widedeep.metrics import Precision
>>>
>>> prec = Precision()
>>> y_true = torch.tensor([0, 1, 0, 1]).view(-1, 1)
>>> y_pred = torch.tensor([[0.3, 0.2, 0.6, 0.7]]).view(-1, 1)
>>> prec(y_pred, y_true)
array(0.5)
>>>
>>> prec = Precision(average=True)
>>> y_true = torch.tensor([0, 1, 2])
>>> y_pred = torch.tensor([[0.7, 0.1, 0.2], [0.1, 0.1, 0.8], [0.1, 0.5, 0.4]])
>>> prec(y_pred, y_true)
array(0.33333334)
Source code in pytorch_widedeep/metrics.py
107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 |
|
reset ¶
reset()
resets counters to 0
Source code in pytorch_widedeep/metrics.py
144 145 146 147 148 149 |
|
Recall ¶
Bases: Metric
Class to calculate the recall for both binary and categorical problems
Parameters:
Name | Type | Description | Default |
---|---|---|---|
average
|
bool
|
This applies only to multiclass problems. if |
True
|
Examples:
>>> import torch
>>>
>>> from pytorch_widedeep.metrics import Recall
>>>
>>> rec = Recall()
>>> y_true = torch.tensor([0, 1, 0, 1]).view(-1, 1)
>>> y_pred = torch.tensor([[0.3, 0.2, 0.6, 0.7]]).view(-1, 1)
>>> rec(y_pred, y_true)
array(0.5)
>>>
>>> rec = Recall(average=True)
>>> y_true = torch.tensor([0, 1, 2])
>>> y_pred = torch.tensor([[0.7, 0.1, 0.2], [0.1, 0.1, 0.8], [0.1, 0.5, 0.4]])
>>> rec(y_pred, y_true)
array(0.33333334)
Source code in pytorch_widedeep/metrics.py
173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 |
|
reset ¶
reset()
resets counters to 0
Source code in pytorch_widedeep/metrics.py
210 211 212 213 214 215 |
|
FBetaScore ¶
Bases: Metric
Class to calculate the fbeta score for both binary and categorical problems
Parameters:
Name | Type | Description | Default |
---|---|---|---|
beta
|
int
|
Coefficient to control the balance between precision and recall |
required |
average
|
bool
|
This applies only to multiclass problems. if |
True
|
Examples:
>>> import torch
>>>
>>> from pytorch_widedeep.metrics import FBetaScore
>>>
>>> fbeta = FBetaScore(beta=2)
>>> y_true = torch.tensor([0, 1, 0, 1]).view(-1, 1)
>>> y_pred = torch.tensor([[0.3, 0.2, 0.6, 0.7]]).view(-1, 1)
>>> fbeta(y_pred, y_true)
array(0.5)
>>>
>>> fbeta = FBetaScore(beta=2)
>>> y_true = torch.tensor([0, 1, 2])
>>> y_pred = torch.tensor([[0.7, 0.1, 0.2], [0.1, 0.1, 0.8], [0.1, 0.5, 0.4]])
>>> fbeta(y_pred, y_true)
array(0.33333334)
Source code in pytorch_widedeep/metrics.py
239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 |
|
reset ¶
reset()
resets precision and recall
Source code in pytorch_widedeep/metrics.py
283 284 285 286 287 288 |
|
F1Score ¶
Bases: Metric
Class to calculate the f1 score for both binary and categorical problems
Parameters:
Name | Type | Description | Default |
---|---|---|---|
average
|
bool
|
This applies only to multiclass problems. if |
True
|
Examples:
>>> import torch
>>>
>>> from pytorch_widedeep.metrics import F1Score
>>>
>>> f1 = F1Score()
>>> y_true = torch.tensor([0, 1, 0, 1]).view(-1, 1)
>>> y_pred = torch.tensor([[0.3, 0.2, 0.6, 0.7]]).view(-1, 1)
>>> f1(y_pred, y_true)
array(0.5)
>>>
>>> f1 = F1Score()
>>> y_true = torch.tensor([0, 1, 2])
>>> y_pred = torch.tensor([[0.7, 0.1, 0.2], [0.1, 0.1, 0.8], [0.1, 0.5, 0.4]])
>>> f1(y_pred, y_true)
array(0.33333334)
Source code in pytorch_widedeep/metrics.py
303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 |
|
reset ¶
reset()
resets counters to 0
Source code in pytorch_widedeep/metrics.py
338 339 340 341 342 |
|
R2Score ¶
Bases: Metric
Calculates R-Squared, the coefficient of determination:
where \(\hat{y_j}\) is the ground truth, \(y_j\) is the predicted value and \(\bar{y}\) is the mean of the ground truth.
Examples:
>>> import torch
>>>
>>> from pytorch_widedeep.metrics import R2Score
>>>
>>> r2 = R2Score()
>>> y_true = torch.tensor([3, -0.5, 2, 7]).view(-1, 1)
>>> y_pred = torch.tensor([2.5, 0.0, 2, 8]).view(-1, 1)
>>> r2(y_pred, y_true)
array(0.94860814)
Source code in pytorch_widedeep/metrics.py
348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 |
|
reset ¶
reset()
resets counters to 0
Source code in pytorch_widedeep/metrics.py
381 382 383 384 385 386 387 388 |
|