Skip to content

Training multimodal Deep Learning Models

Here is the documentation for the Trainer class, that will do all the heavy lifting.

Trainer is also available from pytorch-widedeep directly, for example, one could do:

    from pytorch-widedeep.training import Trainer

or also:

    from pytorch-widedeep import Trainer

Trainer

Trainer(model, objective, custom_loss_function=None, optimizers=None, lr_schedulers=None, initializers=None, transforms=None, callbacks=None, metrics=None, verbose=1, seed=1, **kwargs)

Bases: BaseTrainer

Class to set the of attributes that will be used during the training process.

Parameters:

  • model (WideDeep) –

    An object of class WideDeep

  • objective (str) –

    Defines the objective, loss or cost function.

    Param aliases: loss_function, loss_fn, loss, cost_function, cost_fn, cost.

    Possible values are:

    • binary, aliases: logistic, binary_logloss, binary_cross_entropy

    • binary_focal_loss

    • multiclass, aliases: multi_logloss, cross_entropy, categorical_cross_entropy,

    • multiclass_focal_loss

    • regression, aliases: mse, l2, mean_squared_error

    • mean_absolute_error, aliases: mae, l1

    • mean_squared_log_error, aliases: msle

    • root_mean_squared_error, aliases: rmse

    • root_mean_squared_log_error, aliases: rmsle

    • zero_inflated_lognormal, aliases: ziln

    • quantile

    • tweedie

  • custom_loss_function (Optional[Module], default: None ) –

    It is possible to pass a custom loss function. See for example pytorch_widedeep.losses.FocalLoss for the required structure of the object or the Examples section in this documentation or in the repo. Note that if custom_loss_function is not None, objective must be 'binary', 'multiclass' or 'regression', consistent with the loss function

  • optimizers (Optional[Union[Optimizer, Dict[str, Optimizer]]], default: None ) –
    • An instance of Pytorch's Optimizer object (e.g. torch.optim.Adam()) or
    • a dictionary where there keys are the model components (i.e. 'wide', 'deeptabular', 'deeptext', 'deepimage' and/or 'deephead') and the values are the corresponding optimizers. If multiple optimizers are used the dictionary MUST contain an optimizer per model component.

    if no optimizers are passed it will default to Adam for all model components

  • lr_schedulers (Optional[Union[LRScheduler, Dict[str, LRScheduler]]], default: None ) –
    • An instance of Pytorch's LRScheduler object (e.g torch.optim.lr_scheduler.StepLR(opt, step_size=5)) or
    • a dictionary where there keys are the model componenst (i.e. 'wide', 'deeptabular', 'deeptext', 'deepimage' and/or 'deephead') and the values are the corresponding learning rate schedulers.
  • initializers (Optional[Union[Initializer, Dict[str, Initializer]]], default: None ) –
    • An instance of an Initializer object see pytorch-widedeep.initializers or
    • a dictionary where there keys are the model components (i.e. 'wide', 'deeptabular', 'deeptext', 'deepimage' and/or 'deephead') and the values are the corresponding initializers.
  • transforms (Optional[List[Transforms]], default: None ) –

    List with torchvision.transforms to be applied to the image component of the model (i.e. deepimage) See torchvision transforms.

  • callbacks (Optional[List[Callback]], default: None ) –

    List with Callback objects. The three callbacks available in pytorch-widedeep are: LRHistory, ModelCheckpoint and EarlyStopping. The History and the LRShedulerCallback callbacks are used by default. This can also be a custom callback as long as the object of type Callback. See pytorch_widedeep.callbacks.Callback or the examples folder in the repo.

  • metrics (Optional[Union[List[Metric], List[Metric]]], default: None ) –
    • List of objects of type Metric. Metrics available are: Accuracy, Precision, Recall, FBetaScore, F1Score and R2Score. This can also be a custom metric as long as it is an object of type Metric. See pytorch_widedeep.metrics.Metric or the examples folder in the repo
    • List of objects of type torchmetrics.Metric. This can be any metric from torchmetrics library Examples. This can also be a custom metric as long as it is an object of type Metric. See the instructions.
  • verbose (int, default: 1 ) –

    Verbosity level. If set to 0 nothing will be printed during training

  • seed (int, default: 1 ) –

    Random seed to be used internally for train/test split

Other Parameters:

  • **kwargs

    Other infrequently used arguments that can also be passed as kwargs are:

    • device: str
      string indicating the device. One of 'cpu' or 'gpu'

    • num_workers: int
      number of workers to be used internally by the data loaders

    • lambda_sparse: float
      lambda sparse parameter in case the deeptabular component is TabNet

    • class_weight: List[float]
      This is the weight or pos_weight parameter in CrossEntropyLoss and BCEWithLogitsLoss, depending on whether

    • reducelronplateau_criterion: str This sets the criterion that will be used by the lr scheduler to take a step: One of 'loss' or 'metric'. The ReduceLROnPlateau learning rate is a bit particular.

Attributes:

  • cyclic_lr (bool) –

    Attribute that indicates if any of the lr_schedulers is cyclic_lr (i.e. CyclicLR or OneCycleLR). See Pytorch schedulers.

  • feature_importance (dict) –

    dict where the keys are the column names and the values are the corresponding feature importances. This attribute will only exist if the deeptabular component is a Tabnet model.

Examples:

>>> import torch
>>> from torchvision.transforms import ToTensor
>>>
>>> # wide deep imports
>>> from pytorch_widedeep.callbacks import EarlyStopping, LRHistory
>>> from pytorch_widedeep.initializers import KaimingNormal, KaimingUniform, Normal, Uniform
>>> from pytorch_widedeep.models import TabResnet, Vision, BasicRNN, Wide, WideDeep
>>> from pytorch_widedeep import Trainer
>>>
>>> embed_input = [(u, i, j) for u, i, j in zip(["a", "b", "c"][:4], [4] * 3, [8] * 3)]
>>> column_idx = {k: v for v, k in enumerate(["a", "b", "c"])}
>>> wide = Wide(10, 1)
>>>
>>> # build the model
>>> deeptabular = TabResnet(blocks_dims=[8, 4], column_idx=column_idx, cat_embed_input=embed_input)
>>> deeptext = BasicRNN(vocab_size=10, embed_dim=4, padding_idx=0)
>>> deepimage = Vision()
>>> model = WideDeep(wide=wide, deeptabular=deeptabular, deeptext=deeptext, deepimage=deepimage)
>>>
>>> # set optimizers and schedulers
>>> wide_opt = torch.optim.Adam(model.wide.parameters())
>>> deep_opt = torch.optim.AdamW(model.deeptabular.parameters())
>>> text_opt = torch.optim.Adam(model.deeptext.parameters())
>>> img_opt = torch.optim.AdamW(model.deepimage.parameters())
>>>
>>> wide_sch = torch.optim.lr_scheduler.StepLR(wide_opt, step_size=5)
>>> deep_sch = torch.optim.lr_scheduler.StepLR(deep_opt, step_size=3)
>>> text_sch = torch.optim.lr_scheduler.StepLR(text_opt, step_size=5)
>>> img_sch = torch.optim.lr_scheduler.StepLR(img_opt, step_size=3)
>>>
>>> optimizers = {"wide": wide_opt, "deeptabular": deep_opt, "deeptext": text_opt, "deepimage": img_opt}
>>> schedulers = {"wide": wide_sch, "deeptabular": deep_sch, "deeptext": text_sch, "deepimage": img_sch}
>>>
>>> # set initializers and callbacks
>>> initializers = {"wide": Uniform, "deeptabular": Normal, "deeptext": KaimingNormal, "deepimage": KaimingUniform}
>>> transforms = [ToTensor]
>>> callbacks = [LRHistory(n_epochs=4), EarlyStopping]
>>>
>>> # set the trainer
>>> trainer = Trainer(model, objective="regression", initializers=initializers, optimizers=optimizers,
... lr_schedulers=schedulers, callbacks=callbacks, transforms=transforms)
Source code in pytorch_widedeep/training/trainer.py
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
@alias(  # noqa: C901
    "objective",
    ["loss_function", "loss_fn", "loss", "cost_function", "cost_fn", "cost"],
)
def __init__(
    self,
    model: WideDeep,
    objective: str,
    custom_loss_function: Optional[nn.Module] = None,
    optimizers: Optional[Union[Optimizer, Dict[str, Optimizer]]] = None,
    lr_schedulers: Optional[Union[LRScheduler, Dict[str, LRScheduler]]] = None,
    initializers: Optional[Union[Initializer, Dict[str, Initializer]]] = None,
    transforms: Optional[List[Transforms]] = None,
    callbacks: Optional[List[Callback]] = None,
    metrics: Optional[Union[List[Metric], List[TorchMetric]]] = None,
    verbose: int = 1,
    seed: int = 1,
    **kwargs,
):
    super().__init__(
        model=model,
        objective=objective,
        custom_loss_function=custom_loss_function,
        optimizers=optimizers,
        lr_schedulers=lr_schedulers,
        initializers=initializers,
        transforms=transforms,
        callbacks=callbacks,
        metrics=metrics,
        verbose=verbose,
        seed=seed,
        **kwargs,
    )

fit

fit(X_wide=None, X_tab=None, X_text=None, X_img=None, X_train=None, X_val=None, val_split=None, target=None, n_epochs=1, validation_freq=1, batch_size=32, custom_dataloader=None, feature_importance_sample_size=None, finetune=False, with_lds=False, **kwargs)

Fit method.

The input datasets can be passed either directly via numpy arrays (X_wide, X_tab, X_text or X_img) or alternatively, in dictionaries (X_train or X_val).

Parameters:

  • X_wide (Optional[ndarray], default: None ) –

    Input for the wide model component. See pytorch_widedeep.preprocessing.WidePreprocessor

  • X_tab (Optional[ndarray], default: None ) –

    Input for the deeptabular model component. See pytorch_widedeep.preprocessing.TabPreprocessor

  • X_text (Optional[ndarray], default: None ) –

    Input for the deeptext model component. See pytorch_widedeep.preprocessing.TextPreprocessor

  • X_img (Optional[ndarray], default: None ) –

    Input for the deepimage model component. See pytorch_widedeep.preprocessing.ImagePreprocessor

  • X_train (Optional[Dict[str, ndarray]], default: None ) –

    The training dataset can also be passed in a dictionary. Keys are 'X_wide', 'X_tab', 'X_text', 'X_img' and 'target'. Values are the corresponding matrices.

  • X_val (Optional[Dict[str, ndarray]], default: None ) –

    The validation dataset can also be passed in a dictionary. Keys are 'X_wide', 'X_tab', 'X_text', 'X_img' and 'target'. Values are the corresponding matrices.

  • val_split (Optional[float], default: None ) –

    train/val split fraction

  • target (Optional[ndarray], default: None ) –

    target values

  • n_epochs (int, default: 1 ) –

    number of epochs

  • validation_freq (int, default: 1 ) –

    epochs validation frequency

  • batch_size (int, default: 32 ) –

    batch size

  • custom_dataloader (Optional[DataLoader], default: None ) –

    object of class torch.utils.data.DataLoader. Available predefined dataloaders are in pytorch-widedeep.dataloaders.If None, a standard torch DataLoader is used.

  • finetune (bool, default: False ) –

    fine-tune individual model components. This functionality can also be used to 'warm-up' (and hence the alias warmup) individual components before the joined training starts, and hence its alias. See the Examples folder in the repo for more details

    pytorch_widedeep implements 3 fine-tune routines.

    • fine-tune all trainable layers at once. This routine is inspired by the work of Howard & Sebastian Ruder 2018 in their ULMfit paper. Using a Slanted Triangular learing (see Leslie N. Smith paper ) , the process is the following: i) the learning rate will gradually increase for 10% of the training steps from max_lr/10 to max_lr. ii) It will then gradually decrease to max_lr/10 for the remaining 90% of the steps. The optimizer used in the process is Adam.

    and two gradual fine-tune routines, where only certain layers are trained at a time.

    • The so called Felbo gradual fine-tune rourine, based on the the Felbo et al., 2017 DeepEmoji paper.
    • The Howard routine based on the work of Howard & Sebastian Ruder 2018 in their ULMfit paper.

    For details on how these routines work, please see the Examples section in this documentation and the Examples folder in the repo.
    Param Alias: warmup

  • with_lds (bool, default: False ) –

    Boolean indicating if Label Distribution Smoothing will be used.
    information_source: NOTE: We consider this feature absolutely experimental and we recommend the user to not use it unless the corresponding publication is well understood

Other Parameters:

  • **kwargs (dict) –

    Other keyword arguments are:

    • DataLoader related parameters:
      For example, sampler, batch_sampler, collate_fn, etc. Please, see the pytorch DataLoader docs for details.

    • Label Distribution Smoothing related parameters:

      • lds_kernel (Literal['gaussian', 'triang', 'laplace']): choice of kernel for Label Distribution Smoothing
      • lds_ks (int): LDS kernel window size
      • lds_sigma (float): standard deviation of ['gaussian','laplace'] kernel for LDS
      • lds_granularity (int): number of bins in histogram used in LDS to count occurence of sample values
      • lds_reweight (bool): option to reweight bin frequency counts in LDS
      • lds_y_max (Optional[float]): option to restrict LDS bins by upper label limit
      • lds_y_min (Optional[float]): option to restrict LDS bins by lower label limit

      See pytorch_widedeep.trainer._wd_dataset for more details on the implications of these parameters

    • Finetune related parameters:
      see the source code at pytorch_widedeep._finetune. Namely, these are:

      • finetune_epochs (int): number of epochs use for fine tuning
      • finetune_max_lr (float): max lr during fine tuning
      • routine (str): one of 'howard' or 'felbo'
      • deeptabular_gradual (bool): boolean indicating if the deeptabular component will be fine tuned gradually
      • deeptabular_layers (List[nn.Module]): List of pytorch modules indicating the layers of the deeptabular that will be fine tuned
      • deeptabular_max_lr (float): max lr for the deeptabular componet during fine tuning
      • deeptext_gradual (bool): same as deeptabular_gradual but for the deeptext component
      • deeptext_layers (List[nn.Module]): same as deeptabular_gradual but for the deeptext component
      • deeptext_max_lr (float): same as deeptabular_gradual but for the deeptext component
      • deepimage_gradual (bool): same as deeptabular_gradual but for the deepimage component
      • deepimage_layers (List[nn.Module]): same as deeptabular_gradual but for the deepimage component
      • deepimage_max_lr (float): same as deeptabular_gradual but for the deepimage component

Examples:

For a series of comprehensive examples on how to use the fit method, please see the Examples folder in the repo

Source code in pytorch_widedeep/training/trainer.py
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
@alias("finetune", ["warmup"])
def fit(  # noqa: C901
    self,
    X_wide: Optional[np.ndarray] = None,
    X_tab: Optional[np.ndarray] = None,
    X_text: Optional[np.ndarray] = None,
    X_img: Optional[np.ndarray] = None,
    X_train: Optional[Dict[str, np.ndarray]] = None,
    X_val: Optional[Dict[str, np.ndarray]] = None,
    val_split: Optional[float] = None,
    target: Optional[np.ndarray] = None,
    n_epochs: int = 1,
    validation_freq: int = 1,
    batch_size: int = 32,
    custom_dataloader: Optional[DataLoader] = None,
    feature_importance_sample_size: Optional[int] = None,
    finetune: bool = False,
    with_lds: bool = False,
    **kwargs,
):
    r"""Fit method.

    The input datasets can be passed either directly via numpy arrays
    (`X_wide`, `X_tab`, `X_text` or `X_img`) or alternatively, in
    dictionaries (`X_train` or `X_val`).

    Parameters
    ----------
    X_wide: np.ndarray, Optional. default=None
        Input for the `wide` model component.
        See `pytorch_widedeep.preprocessing.WidePreprocessor`
    X_tab: np.ndarray, Optional. default=None
        Input for the `deeptabular` model component.
        See `pytorch_widedeep.preprocessing.TabPreprocessor`
    X_text: np.ndarray, Optional. default=None
        Input for the `deeptext` model component.
        See `pytorch_widedeep.preprocessing.TextPreprocessor`
    X_img: np.ndarray, Optional. default=None
        Input for the `deepimage` model component.
        See `pytorch_widedeep.preprocessing.ImagePreprocessor`
    X_train: Dict, Optional. default=None
        The training dataset can also be passed in a dictionary. Keys are
        _'X_wide'_, _'X_tab'_, _'X_text'_, _'X_img'_ and _'target'_. Values
        are the corresponding matrices.
    X_val: Dict, Optional. default=None
        The validation dataset can also be passed in a dictionary. Keys
        are _'X_wide'_, _'X_tab'_, _'X_text'_, _'X_img'_ and _'target'_.
        Values are the corresponding matrices.
    val_split: float, Optional. default=None
        train/val split fraction
    target: np.ndarray, Optional. default=None
        target values
    n_epochs: int, default=1
        number of epochs
    validation_freq: int, default=1
        epochs validation frequency
    batch_size: int, default=32
        batch size
    custom_dataloader: `DataLoader`, Optional, default=None
        object of class `torch.utils.data.DataLoader`. Available
        predefined dataloaders are in `pytorch-widedeep.dataloaders`.If
        `None`, a standard torch `DataLoader` is used.
    finetune: bool, default=False
        fine-tune individual model components. This functionality can also
        be used to 'warm-up' (and hence the alias `warmup`) individual
        components before the joined training starts, and hence its
        alias. See the Examples folder in the repo for more details

        `pytorch_widedeep` implements 3 fine-tune routines.

        - fine-tune all trainable layers at once. This routine is
          inspired by the work of Howard & Sebastian Ruder 2018 in their
          [ULMfit paper](https://arxiv.org/abs/1801.06146). Using a
          Slanted Triangular learing (see
          [Leslie N. Smith paper](https://arxiv.org/pdf/1506.01186.pdf) ) ,
          the process is the following: *i*) the learning rate will
          gradually increase for 10% of the training steps from max_lr/10
          to max_lr. *ii*) It will then gradually decrease to max_lr/10
          for the remaining 90% of the steps. The optimizer used in the
          process is `Adam`.

        and two gradual fine-tune routines, where only certain layers are
        trained at a time.

        - The so called `Felbo` gradual fine-tune rourine, based on the the
          Felbo et al., 2017 [DeepEmoji paper](https://arxiv.org/abs/1708.00524).
        - The `Howard` routine based on the work of Howard & Sebastian Ruder 2018 in their
          [ULMfit paper](https://arxiv.org/abs/1801.06146>).

        For details on how these routines work, please see the Examples
        section in this documentation and the Examples folder in the repo. <br/>
        Param Alias: `warmup`
    with_lds: bool, default=False
        Boolean indicating if Label Distribution Smoothing will be used. <br/>
        information_source: **NOTE**: We consider this feature absolutely
        experimental and we recommend the user to not use it unless the
        corresponding [publication](https://arxiv.org/abs/2102.09554) is
        well understood

    Other Parameters
    ----------------
    **kwargs : dict
        Other keyword arguments are:

        - **DataLoader related parameters**:<br/>
            For example,  `sampler`, `batch_sampler`, `collate_fn`, etc.
            Please, see the pytorch
            [DataLoader docs](https://pytorch.org/docs/stable/data.html#torch.utils.data.DataLoader)
            for details.

        - **Label Distribution Smoothing related parameters**:<br/>

            - lds_kernel (`Literal['gaussian', 'triang', 'laplace']`):
                choice of kernel for Label Distribution Smoothing
            - lds_ks (`int`):
                LDS kernel window size
            - lds_sigma (`float`):
                standard deviation of ['gaussian','laplace'] kernel for LDS
            - lds_granularity (`int`):
                number of bins in histogram used in LDS to count occurence of sample values
            - lds_reweight (`bool`):
                option to reweight bin frequency counts in LDS
            - lds_y_max (`Optional[float]`):
                option to restrict LDS bins by upper label limit
            - lds_y_min (`Optional[float]`):
                option to restrict LDS bins by lower label limit

            See `pytorch_widedeep.trainer._wd_dataset` for more details on
            the implications of these parameters

        - **Finetune related parameters**:<br/>
            see the source code at `pytorch_widedeep._finetune`. Namely, these are:

            - `finetune_epochs` (`int`):
                number of epochs use for fine tuning
            - `finetune_max_lr` (`float`):
               max lr during fine tuning
            - `routine` (`str`):
               one of _'howard'_ or _'felbo'_
            - `deeptabular_gradual` (`bool`):
               boolean indicating if the `deeptabular` component will be fine tuned gradually
            - `deeptabular_layers` (`List[nn.Module]`):
               List of pytorch modules indicating the layers of the
               `deeptabular` that will be fine tuned
            - `deeptabular_max_lr` (`float`):
               max lr for the `deeptabular` componet during fine tuning
            - `deeptext_gradual` (`bool`):
               same as `deeptabular_gradual` but for the `deeptext` component
            - `deeptext_layers` (`List[nn.Module]`):
               same as `deeptabular_gradual` but for the `deeptext` component
            - `deeptext_max_lr` (`float`):
               same as `deeptabular_gradual` but for the `deeptext` component
            - `deepimage_gradual` (`bool`):
               same as `deeptabular_gradual` but for the `deepimage` component
            - `deepimage_layers` (`List[nn.Module]`):
               same as `deeptabular_gradual` but for the `deepimage` component
            - `deepimage_max_lr` (`float`):
                same as `deeptabular_gradual` but for the `deepimage` component

    Examples
    --------

    For a series of comprehensive examples on how to use the `fit` method, please see the
    [Examples](https://github.com/jrzaurin/pytorch-widedeep/tree/master/examples)
    folder in the repo
    """

    lds_args, dataloader_args, finetune_args = self._extract_kwargs(kwargs)
    lds_args["with_lds"] = with_lds
    self.with_lds = with_lds

    self.batch_size = batch_size

    train_set, eval_set = wd_train_val_split(
        self.seed,
        self.method,  # type: ignore
        X_wide,
        X_tab,
        X_text,
        X_img,
        X_train,
        X_val,
        val_split,
        target,
        **lds_args,
    )
    if isinstance(custom_dataloader, type):
        if issubclass(custom_dataloader, DataLoader):
            train_loader = custom_dataloader(  # type: ignore[misc]
                dataset=train_set,
                batch_size=batch_size,
                num_workers=self.num_workers,
                **dataloader_args,
            )
        else:
            NotImplementedError(
                "Custom DataLoader must be a subclass of "
                "torch.utils.data.DataLoader, please see the "
                "pytorch documentation or examples in "
                "pytorch_widedeep.dataloaders"
            )
    else:
        train_loader = DataLoaderDefault(
            dataset=train_set,
            batch_size=batch_size,
            num_workers=self.num_workers,
            **dataloader_args,
        )
    train_steps = len(train_loader)
    if eval_set is not None:
        eval_loader = DataLoader(
            dataset=eval_set,
            batch_size=batch_size,
            num_workers=self.num_workers,
            shuffle=False,
        )
        eval_steps = len(eval_loader)

    if finetune:
        self.with_finetuning: bool = True
        self._finetune(train_loader, **finetune_args)
        if self.verbose:
            print(
                "Fine-tuning (or warmup) of individual components completed. "
                "Training the whole model for {} epochs".format(n_epochs)
            )
    else:
        self.with_finetuning = False

    self.callback_container.on_train_begin(
        {"batch_size": batch_size, "train_steps": train_steps, "n_epochs": n_epochs}
    )
    for epoch in range(n_epochs):
        epoch_logs: Dict[str, float] = {}
        self.callback_container.on_epoch_begin(epoch, logs=epoch_logs)

        self.train_running_loss = 0.0
        with trange(train_steps, disable=self.verbose != 1) as t:
            for batch_idx, (data, targett, lds_weightt) in zip(t, train_loader):
                t.set_description("epoch %i" % (epoch + 1))
                train_score, train_loss = self._train_step(
                    data, targett, batch_idx, epoch, lds_weightt
                )
                print_loss_and_metric(t, train_loss, train_score)
                self.callback_container.on_batch_end(batch=batch_idx)
        epoch_logs = save_epoch_logs(epoch_logs, train_loss, train_score, "train")

        on_epoch_end_metric = None
        if eval_set is not None and epoch % validation_freq == (
            validation_freq - 1
        ):
            self.callback_container.on_eval_begin()
            self.valid_running_loss = 0.0
            with trange(eval_steps, disable=self.verbose != 1) as v:
                for i, (data, targett) in zip(v, eval_loader):
                    v.set_description("valid")
                    val_score, val_loss = self._eval_step(data, targett, i)
                    print_loss_and_metric(v, val_loss, val_score)
            epoch_logs = save_epoch_logs(epoch_logs, val_loss, val_score, "val")

            if self.reducelronplateau:
                if self.reducelronplateau_criterion == "loss":
                    on_epoch_end_metric = val_loss
                else:
                    on_epoch_end_metric = val_score[
                        self.reducelronplateau_criterion
                    ]
        else:
            if self.reducelronplateau:
                raise NotImplementedError(
                    "ReduceLROnPlateau scheduler can be used only with validation data."
                )
        self.callback_container.on_epoch_end(epoch, epoch_logs, on_epoch_end_metric)

        if self.early_stop:
            # self.callback_container.on_train_end(epoch_logs)
            break

        if self.model.with_fds:
            self._update_fds_stats(train_loader, epoch)

    self.callback_container.on_train_end(epoch_logs)

    if feature_importance_sample_size is not None:
        self.feature_importance = FeatureImportance(
            self.device, feature_importance_sample_size
        ).feature_importance(train_loader, self.model)
    self._restore_best_weights()
    self.model.train()

predict

predict(X_wide=None, X_tab=None, X_text=None, X_img=None, X_test=None, batch_size=None)

Returns the predictions

The input datasets can be passed either directly via numpy arrays (X_wide, X_tab, X_text or X_img) or alternatively, in a dictionary (X_test)

Parameters:

  • X_wide (Optional[ndarray], default: None ) –

    Input for the wide model component. See pytorch_widedeep.preprocessing.WidePreprocessor

  • X_tab (Optional[ndarray], default: None ) –

    Input for the deeptabular model component. See pytorch_widedeep.preprocessing.TabPreprocessor

  • X_text (Optional[ndarray], default: None ) –

    Input for the deeptext model component. See pytorch_widedeep.preprocessing.TextPreprocessor

  • X_img (Optional[ndarray], default: None ) –

    Input for the deepimage model component. See pytorch_widedeep.preprocessing.ImagePreprocessor

  • X_test (Optional[Dict[str, ndarray]], default: None ) –

    The test dataset can also be passed in a dictionary. Keys are X_wide, 'X_tab', 'X_text', 'X_img' and 'target'. Values are the corresponding matrices.

  • batch_size (Optional[int], default: None ) –

    If a trainer is used to predict after having trained a model, the batch_size needs to be defined as it will not be defined as the Trainer is instantiated

Returns:

  • np.ndarray:

    array with the predictions

Source code in pytorch_widedeep/training/trainer.py
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
def predict(  # type: ignore[return]
    self,
    X_wide: Optional[np.ndarray] = None,
    X_tab: Optional[np.ndarray] = None,
    X_text: Optional[np.ndarray] = None,
    X_img: Optional[np.ndarray] = None,
    X_test: Optional[Dict[str, np.ndarray]] = None,
    batch_size: Optional[int] = None,
) -> np.ndarray:
    r"""Returns the predictions

    The input datasets can be passed either directly via numpy arrays
    (`X_wide`, `X_tab`, `X_text` or `X_img`) or alternatively, in
    a dictionary (`X_test`)


    Parameters
    ----------
    X_wide: np.ndarray, Optional. default=None
        Input for the `wide` model component.
        See `pytorch_widedeep.preprocessing.WidePreprocessor`
    X_tab: np.ndarray, Optional. default=None
        Input for the `deeptabular` model component.
        See `pytorch_widedeep.preprocessing.TabPreprocessor`
    X_text: np.ndarray, Optional. default=None
        Input for the `deeptext` model component.
        See `pytorch_widedeep.preprocessing.TextPreprocessor`
    X_img: np.ndarray, Optional. default=None
        Input for the `deepimage` model component.
        See `pytorch_widedeep.preprocessing.ImagePreprocessor`
    X_test: Dict, Optional. default=None
        The test dataset can also be passed in a dictionary. Keys are
        `X_wide`, _'X_tab'_, _'X_text'_, _'X_img'_ and _'target'_. Values
        are the corresponding matrices.
    batch_size: int, default = 256
        If a trainer is used to predict after having trained a model, the
        `batch_size` needs to be defined as it will not be defined as
        the `Trainer` is instantiated

    Returns
    -------
    np.ndarray:
        array with the predictions
    """
    preds_l = self._predict(X_wide, X_tab, X_text, X_img, X_test, batch_size)
    if self.method == "regression":
        return np.vstack(preds_l).squeeze(1)
    if self.method == "binary":
        preds = np.vstack(preds_l).squeeze(1)
        return (preds > 0.5).astype("int")
    if self.method == "qregression":
        return np.vstack(preds_l)
    if self.method == "multiclass":
        preds = np.vstack(preds_l)
        return np.argmax(preds, 1)  # type: ignore[return-value]

predict_uncertainty

predict_uncertainty(X_wide=None, X_tab=None, X_text=None, X_img=None, X_test=None, batch_size=None, uncertainty_granularity=1000)

Returns the predicted ucnertainty of the model for the test dataset using a Monte Carlo method during which dropout layers are activated in the evaluation/prediction phase and each sample is predicted N times (uncertainty_granularity times).

This is based on Dropout as a Bayesian Approximation: Representing Model Uncertainty in Deep Learning.

Parameters:

  • X_wide (Optional[ndarray], default: None ) –

    Input for the wide model component. See pytorch_widedeep.preprocessing.WidePreprocessor

  • X_tab (Optional[ndarray], default: None ) –

    Input for the deeptabular model component. See pytorch_widedeep.preprocessing.TabPreprocessor

  • X_text (Optional[ndarray], default: None ) –

    Input for the deeptext model component. See pytorch_widedeep.preprocessing.TextPreprocessor

  • X_img (Optional[ndarray], default: None ) –

    Input for the deepimage model component. See pytorch_widedeep.preprocessing.ImagePreprocessor

  • X_test (Optional[Dict[str, ndarray]], default: None ) –

    The test dataset can also be passed in a dictionary. Keys are 'X_wide', 'X_tab', 'X_text', 'X_img' and 'target'. Values are the corresponding matrices.

  • batch_size (Optional[int], default: None ) –

    If a trainer is used to predict after having trained a model, the batch_size needs to be defined as it will not be defined as the Trainer is instantiated

  • uncertainty_granularity

    number of times the model does prediction for each sample

Returns:

  • np.ndarray:
    • if method = regression, it will return an array with (max, min, mean, stdev) values for each sample.
    • if method = binary it will return an array with (mean_cls_0_prob, mean_cls_1_prob, predicted_cls) for each sample.
    • if method = multiclass it will return an array with (mean_cls_0_prob, mean_cls_1_prob, mean_cls_2_prob, ... , predicted_cls) values for each sample.
Source code in pytorch_widedeep/training/trainer.py
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
def predict_uncertainty(  # type: ignore[return]
    self,
    X_wide: Optional[np.ndarray] = None,
    X_tab: Optional[np.ndarray] = None,
    X_text: Optional[np.ndarray] = None,
    X_img: Optional[np.ndarray] = None,
    X_test: Optional[Dict[str, np.ndarray]] = None,
    batch_size: Optional[int] = None,
    uncertainty_granularity=1000,
) -> np.ndarray:
    r"""Returns the predicted ucnertainty of the model for the test dataset
    using a Monte Carlo method during which dropout layers are activated
    in the evaluation/prediction phase and each sample is predicted N
    times (`uncertainty_granularity` times).

    This is based on
    [Dropout as a Bayesian Approximation: Representing
    Model Uncertainty in Deep Learning](https://arxiv.org/abs/1506.02142?context=stat).

    Parameters
    ----------
    X_wide: np.ndarray, Optional. default=None
        Input for the `wide` model component.
        See `pytorch_widedeep.preprocessing.WidePreprocessor`
    X_tab: np.ndarray, Optional. default=None
        Input for the `deeptabular` model component.
        See `pytorch_widedeep.preprocessing.TabPreprocessor`
    X_text: np.ndarray, Optional. default=None
        Input for the `deeptext` model component.
        See `pytorch_widedeep.preprocessing.TextPreprocessor`
    X_img: np.ndarray, Optional. default=None
        Input for the `deepimage` model component.
        See `pytorch_widedeep.preprocessing.ImagePreprocessor`
    X_test: Dict, Optional. default=None
        The test dataset can also be passed in a dictionary. Keys are
        _'X_wide'_, _'X_tab'_, _'X_text'_, _'X_img'_ and _'target'_. Values
        are the corresponding matrices.
    batch_size: int, default = 256
        If a trainer is used to predict after having trained a model, the
        `batch_size` needs to be defined as it will not be defined as
        the `Trainer` is instantiated
    uncertainty_granularity: int default = 1000
        number of times the model does prediction for each sample

    Returns
    -------
    np.ndarray:
        - if `method = regression`, it will return an array with `(max, min, mean, stdev)`
          values for each sample.
        - if `method = binary` it will return an array with
          `(mean_cls_0_prob, mean_cls_1_prob, predicted_cls)` for each sample.
        - if `method = multiclass` it will return an array with
          `(mean_cls_0_prob, mean_cls_1_prob, mean_cls_2_prob, ... , predicted_cls)`
          values for each sample.

    """
    preds_l = self._predict(
        X_wide,
        X_tab,
        X_text,
        X_img,
        X_test,
        batch_size,
        uncertainty_granularity,
        uncertainty=True,
    )
    preds = np.vstack(preds_l)
    samples_num = int(preds.shape[0] / uncertainty_granularity)
    if self.method == "regression":
        preds = preds.squeeze(1)
        preds = preds.reshape((uncertainty_granularity, samples_num))
        return np.array(
            (
                preds.max(axis=0),
                preds.min(axis=0),
                preds.mean(axis=0),
                preds.std(axis=0),
            )
        ).T
    if self.method == "qregression":
        raise ValueError(
            "Currently predict_uncertainty is not supported for qregression method"
        )
    if self.method == "binary":
        preds = preds.squeeze(1)
        preds = preds.reshape((uncertainty_granularity, samples_num))
        preds = preds.mean(axis=0)
        probs = np.zeros([preds.shape[0], 3])
        probs[:, 0] = 1 - preds
        probs[:, 1] = preds
        return probs
    if self.method == "multiclass":
        preds = preds.reshape(uncertainty_granularity, samples_num, preds.shape[1])
        preds = preds.mean(axis=0)
        preds = np.hstack((preds, np.vstack(np.argmax(preds, 1))))
        return preds

predict_proba

predict_proba(X_wide=None, X_tab=None, X_text=None, X_img=None, X_test=None, batch_size=None)

Returns the predicted probabilities for the test dataset for binary and multiclass methods

The input datasets can be passed either directly via numpy arrays (X_wide, X_tab, X_text or X_img) or alternatively, in a dictionary (X_test)

Parameters:

  • X_wide (Optional[ndarray], default: None ) –

    Input for the wide model component. See pytorch_widedeep.preprocessing.WidePreprocessor

  • X_tab (Optional[ndarray], default: None ) –

    Input for the deeptabular model component. See pytorch_widedeep.preprocessing.TabPreprocessor

  • X_text (Optional[ndarray], default: None ) –

    Input for the deeptext model component. See pytorch_widedeep.preprocessing.TextPreprocessor

  • X_img (Optional[ndarray], default: None ) –

    Input for the deepimage model component. See pytorch_widedeep.preprocessing.ImagePreprocessor

  • X_test (Optional[Dict[str, ndarray]], default: None ) –

    The test dataset can also be passed in a dictionary. Keys are X_wide, 'X_tab', 'X_text', 'X_img' and 'target'. Values are the corresponding matrices.

  • batch_size (Optional[int], default: None ) –

    If a trainer is used to predict after having trained a model, the batch_size needs to be defined as it will not be defined as the Trainer is instantiated

Returns:

  • ndarray

    array with the probabilities per class

Source code in pytorch_widedeep/training/trainer.py
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
def predict_proba(  # type: ignore[return]
    self,
    X_wide: Optional[np.ndarray] = None,
    X_tab: Optional[np.ndarray] = None,
    X_text: Optional[np.ndarray] = None,
    X_img: Optional[np.ndarray] = None,
    X_test: Optional[Dict[str, np.ndarray]] = None,
    batch_size: Optional[int] = None,
) -> np.ndarray:
    r"""Returns the predicted probabilities for the test dataset for  binary
    and multiclass methods

    The input datasets can be passed either directly via numpy arrays
    (`X_wide`, `X_tab`, `X_text` or `X_img`) or alternatively, in
    a dictionary (`X_test`)

    Parameters
    ----------
    X_wide: np.ndarray, Optional. default=None
        Input for the `wide` model component.
        See `pytorch_widedeep.preprocessing.WidePreprocessor`
    X_tab: np.ndarray, Optional. default=None
        Input for the `deeptabular` model component.
        See `pytorch_widedeep.preprocessing.TabPreprocessor`
    X_text: np.ndarray, Optional. default=None
        Input for the `deeptext` model component.
        See `pytorch_widedeep.preprocessing.TextPreprocessor`
    X_img: np.ndarray, Optional. default=None
        Input for the `deepimage` model component.
        See `pytorch_widedeep.preprocessing.ImagePreprocessor`
    X_test: Dict, Optional. default=None
        The test dataset can also be passed in a dictionary. Keys are
        `X_wide`, _'X_tab'_, _'X_text'_, _'X_img'_ and _'target'_. Values
        are the corresponding matrices.
    batch_size: int, default = 256
        If a trainer is used to predict after having trained a model, the
        `batch_size` needs to be defined as it will not be defined as
        the `Trainer` is instantiated

    Returns
    -------
    np.ndarray
        array with the probabilities per class
    """

    preds_l = self._predict(X_wide, X_tab, X_text, X_img, X_test, batch_size)
    if self.method == "binary":
        preds = np.vstack(preds_l).squeeze(1)
        probs = np.zeros([preds.shape[0], 2])
        probs[:, 0] = 1 - preds
        probs[:, 1] = preds
        return probs
    if self.method == "multiclass":
        return np.vstack(preds_l)

save

save(path, save_state_dict=False, model_filename='wd_model.pt')

Saves the model, training and evaluation history, and the feature_importance attribute (if the deeptabular component is a Tabnet model) to disk

The Trainer class is built so that it 'just' trains a model. With that in mind, all the torch related parameters (such as optimizers, learning rate schedulers, initializers, etc) have to be defined externally and then passed to the Trainer. As a result, the Trainer does not generate any attribute or additional data products that need to be saved other than the model object itself, which can be saved as any other torch model (e.g. torch.save(model, path)).

The exception is Tabnet. If the deeptabular component is a Tabnet model, an attribute (a dict) called feature_importance will be created at the end of the training process. Therefore, a save method was created that will save the feature importance dictionary to a json file and, since we are here, the model weights, training history and learning rate history.

Parameters:

  • path (str) –

    path to the directory where the model and the feature importance attribute will be saved.

  • save_state_dict (bool, default: False ) –

    Boolean indicating whether to save directly the model or the model's state dictionary

  • model_filename (str, default: 'wd_model.pt' ) –

    filename where the model weights will be store

Source code in pytorch_widedeep/training/trainer.py
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
def save(
    self,
    path: str,
    save_state_dict: bool = False,
    model_filename: str = "wd_model.pt",
):
    r"""Saves the model, training and evaluation history, and the
    `feature_importance` attribute (if the `deeptabular` component is a
    Tabnet model) to disk

    The `Trainer` class is built so that it 'just' trains a model. With
    that in mind, all the torch related parameters (such as optimizers,
    learning rate schedulers, initializers, etc) have to be defined
    externally and then passed to the `Trainer`. As a result, the
    `Trainer` does not generate any attribute or additional data
    products that need to be saved other than the `model` object itself,
    which can be saved as any other torch model (e.g. `torch.save(model,
    path)`).

    The exception is Tabnet. If the `deeptabular` component is a Tabnet
    model, an attribute (a dict) called `feature_importance` will be
    created at the end of the training process. Therefore, a `save`
    method was created that will save the feature importance dictionary
    to a json file and, since we are here, the model weights, training
    history and learning rate history.

    Parameters
    ----------
    path: str
        path to the directory where the model and the feature importance
        attribute will be saved.
    save_state_dict: bool, default = False
        Boolean indicating whether to save directly the model or the
        model's state dictionary
    model_filename: str, Optional, default = "wd_model.pt"
        filename where the model weights will be store
    """

    save_dir = Path(path)
    history_dir = save_dir / "history"
    history_dir.mkdir(exist_ok=True, parents=True)

    # the trainer is run with the History Callback by default
    with open(history_dir / "train_eval_history.json", "w") as teh:
        json.dump(self.history, teh)  # type: ignore[attr-defined]

    has_lr_history = any(
        [clbk.__class__.__name__ == "LRHistory" for clbk in self.callbacks]
    )
    if self.lr_scheduler is not None and has_lr_history:
        with open(history_dir / "lr_history.json", "w") as lrh:
            json.dump(self.lr_history, lrh)  # type: ignore[attr-defined]

    model_path = save_dir / model_filename
    if save_state_dict:
        torch.save(self.model.state_dict(), model_path)
    else:
        torch.save(self.model, model_path)

    if self.model.is_tabnet:
        with open(save_dir / "feature_importance.json", "w") as fi:
            json.dump(self.feature_importance, fi)