Skip to content

Training multimodal Deep Learning Models

Here is the documentation for the Trainer class, that will do all the heavy lifting.

Trainer is also available from pytorch-widedeep directly, for example, one could do:

    from pytorch-widedeep.training import Trainer

or also:

    from pytorch-widedeep import Trainer

Trainer

Bases: BaseTrainer

Class to set the of attributes that will be used during the training process.

Parameters:

Name Type Description Default
model WideDeep

An object of class WideDeep

required
objective str

Defines the objective, loss or cost function.

Param aliases: loss_function, loss_fn, loss, cost_function, cost_fn, cost.

Possible values are:

  • binary, aliases: logistic, binary_logloss, binary_cross_entropy

  • binary_focal_loss

  • multiclass, aliases: multi_logloss, cross_entropy, categorical_cross_entropy,

  • multiclass_focal_loss

  • regression, aliases: mse, l2, mean_squared_error

  • mean_absolute_error, aliases: mae, l1

  • mean_squared_log_error, aliases: msle

  • root_mean_squared_error, aliases: rmse

  • root_mean_squared_log_error, aliases: rmsle

  • zero_inflated_lognormal, aliases: ziln

  • quantile

  • tweedie

  • multitarget, aliases: multi_target

NOTE: For multitarget a custom loss function must be passed

required
custom_loss_function Optional[Module]

It is possible to pass a custom loss function. See for example pytorch_widedeep.losses.FocalLoss for the required structure of the object or the Examples section in this documentation or in the repo. Note that if custom_loss_function is not None, objective must be 'binary', 'multiclass' or 'regression', consistent with the loss function

None
optimizers Optional[Union[Optimizer, Dict[str, Union[Optimizer, List[Optimizer]]]]]
  • An instance of Pytorch's Optimizer object (e.g. torch.optim.Adam()) or
  • a dictionary where there keys are the model components (i.e. 'wide', 'deeptabular', 'deeptext', 'deepimage' and/or 'deephead') and the values are the corresponding optimizers or list of optimizers if multiple models are used for the given data mode (e.g. two text columns/models for the deeptext component). If multiple optimizers are used the dictionary MUST contain an optimizer per model component.

if no optimizers are passed it will default to Adam for all model components

None
lr_schedulers Optional[Union[LRScheduler, Dict[str, Union[LRScheduler, List[LRScheduler]]]]]
  • An instance of Pytorch's LRScheduler object (e.g torch.optim.lr_scheduler.StepLR(opt, step_size=5)) or
  • a dictionary where there keys are the model componenst (i.e. 'wide', 'deeptabular', 'deeptext', 'deepimage' and/or 'deephead') and the values are the corresponding learning rate schedulers or list of learning rate schedulers if multiple models are used for the given data mode (e.g. two text columns/models for the deeptext component).
None
initializers Optional[Union[Initializer, Dict[str, Union[Initializer, List[Initializer]]]]]
  • An instance of an Initializer object see pytorch-widedeep.initializers or
  • a dictionary where there keys are the model components (i.e. 'wide', 'deeptabular', 'deeptext', 'deepimage' and/or 'deephead') and the values are the corresponding initializers or list of initializers if multiple models are used for the given data mode (e.g. two text columns/models for the deeptext component).
None
transforms Optional[List[Transforms]]

List with torchvision.transforms to be applied to the image component of the model (i.e. deepimage) See torchvision transforms.

None
callbacks Optional[List[Callback]]

List with Callback objects. The three callbacks available in pytorch-widedeep are: LRHistory, ModelCheckpoint and EarlyStopping. The History and the LRShedulerCallback callbacks are used by default. This can also be a custom callback as long as the object of type Callback. See pytorch_widedeep.callbacks.Callback or the examples folder in the repo.

None
metrics Optional[Union[List[Metric], List[Metric]]]
  • List of objects of type Metric. Metrics available are: Accuracy, Precision, Recall, FBetaScore, F1Score and R2Score. This can also be a custom metric as long as it is an object of type Metric. See pytorch_widedeep.metrics.Metric or the examples folder in the repo
  • List of objects of type torchmetrics.Metric. This can be any metric from torchmetrics library Examples. This can also be a custom metric as long as it is an object of type Metric. See the instructions.
None
verbose int

Verbosity level. If set to 0 nothing will be printed during training

1
seed int

Random seed to be used internally for train/test split

1

Other Parameters:

Name Type Description
**kwargs

Other infrequently used arguments that can also be passed as kwargs are:

  • device: str
    string indicating the device. One of 'cpu', 'gpu' or 'mps' if run on a Mac with Apple silicon or AMD GPU(s)

  • num_workers: int
    number of workers to be used internally by the data loaders

  • lambda_sparse: float
    lambda sparse parameter in case the deeptabular component is TabNet

  • class_weight: List[float]
    This is the weight or pos_weight parameter in CrossEntropyLoss and BCEWithLogitsLoss, depending on whether

  • reducelronplateau_criterion: str This sets the criterion that will be used by the lr scheduler to take a step: One of 'loss' or 'metric'. The ReduceLROnPlateau learning rate is a bit particular.

Attributes:

Name Type Description
cyclic_lr bool

Attribute that indicates if any of the lr_schedulers is cyclic_lr (i.e. CyclicLR or OneCycleLR). See Pytorch schedulers.

feature_importance dict

dict where the keys are the column names and the values are the corresponding feature importances. This attribute will only exist if the deeptabular component is a Tabnet model.

Examples:

>>> import torch
>>> from torchvision.transforms import ToTensor
>>>
>>> # wide deep imports
>>> from pytorch_widedeep.callbacks import EarlyStopping, LRHistory
>>> from pytorch_widedeep.initializers import KaimingNormal, KaimingUniform, Normal, Uniform
>>> from pytorch_widedeep.models import TabResnet, Vision, BasicRNN, Wide, WideDeep
>>> from pytorch_widedeep import Trainer
>>>
>>> embed_input = [(u, i, j) for u, i, j in zip(["a", "b", "c"][:4], [4] * 3, [8] * 3)]
>>> column_idx = {k: v for v, k in enumerate(["a", "b", "c"])}
>>> wide = Wide(10, 1)
>>>
>>> # build the model
>>> deeptabular = TabResnet(blocks_dims=[8, 4], column_idx=column_idx, cat_embed_input=embed_input)
>>> deeptext = BasicRNN(vocab_size=10, embed_dim=4, padding_idx=0)
>>> deepimage = Vision()
>>> model = WideDeep(wide=wide, deeptabular=deeptabular, deeptext=deeptext, deepimage=deepimage)
>>>
>>> # set optimizers and schedulers
>>> wide_opt = torch.optim.Adam(model.wide.parameters())
>>> deep_opt = torch.optim.AdamW(model.deeptabular.parameters())
>>> text_opt = torch.optim.Adam(model.deeptext.parameters())
>>> img_opt = torch.optim.AdamW(model.deepimage.parameters())
>>>
>>> wide_sch = torch.optim.lr_scheduler.StepLR(wide_opt, step_size=5)
>>> deep_sch = torch.optim.lr_scheduler.StepLR(deep_opt, step_size=3)
>>> text_sch = torch.optim.lr_scheduler.StepLR(text_opt, step_size=5)
>>> img_sch = torch.optim.lr_scheduler.StepLR(img_opt, step_size=3)
>>>
>>> optimizers = {"wide": wide_opt, "deeptabular": deep_opt, "deeptext": text_opt, "deepimage": img_opt}
>>> schedulers = {"wide": wide_sch, "deeptabular": deep_sch, "deeptext": text_sch, "deepimage": img_sch}
>>>
>>> # set initializers and callbacks
>>> initializers = {"wide": Uniform, "deeptabular": Normal, "deeptext": KaimingNormal, "deepimage": KaimingUniform}
>>> transforms = [ToTensor]
>>> callbacks = [LRHistory(n_epochs=4), EarlyStopping]
>>>
>>> # set the trainer
>>> trainer = Trainer(model, objective="regression", initializers=initializers, optimizers=optimizers,
... lr_schedulers=schedulers, callbacks=callbacks, transforms=transforms)
Source code in pytorch_widedeep/training/trainer.py
  43
  44
  45
  46
  47
  48
  49
  50
  51
  52
  53
  54
  55
  56
  57
  58
  59
  60
  61
  62
  63
  64
  65
  66
  67
  68
  69
  70
  71
  72
  73
  74
  75
  76
  77
  78
  79
  80
  81
  82
  83
  84
  85
  86
  87
  88
  89
  90
  91
  92
  93
  94
  95
  96
  97
  98
  99
 100
 101
 102
 103
 104
 105
 106
 107
 108
 109
 110
 111
 112
 113
 114
 115
 116
 117
 118
 119
 120
 121
 122
 123
 124
 125
 126
 127
 128
 129
 130
 131
 132
 133
 134
 135
 136
 137
 138
 139
 140
 141
 142
 143
 144
 145
 146
 147
 148
 149
 150
 151
 152
 153
 154
 155
 156
 157
 158
 159
 160
 161
 162
 163
 164
 165
 166
 167
 168
 169
 170
 171
 172
 173
 174
 175
 176
 177
 178
 179
 180
 181
 182
 183
 184
 185
 186
 187
 188
 189
 190
 191
 192
 193
 194
 195
 196
 197
 198
 199
 200
 201
 202
 203
 204
 205
 206
 207
 208
 209
 210
 211
 212
 213
 214
 215
 216
 217
 218
 219
 220
 221
 222
 223
 224
 225
 226
 227
 228
 229
 230
 231
 232
 233
 234
 235
 236
 237
 238
 239
 240
 241
 242
 243
 244
 245
 246
 247
 248
 249
 250
 251
 252
 253
 254
 255
 256
 257
 258
 259
 260
 261
 262
 263
 264
 265
 266
 267
 268
 269
 270
 271
 272
 273
 274
 275
 276
 277
 278
 279
 280
 281
 282
 283
 284
 285
 286
 287
 288
 289
 290
 291
 292
 293
 294
 295
 296
 297
 298
 299
 300
 301
 302
 303
 304
 305
 306
 307
 308
 309
 310
 311
 312
 313
 314
 315
 316
 317
 318
 319
 320
 321
 322
 323
 324
 325
 326
 327
 328
 329
 330
 331
 332
 333
 334
 335
 336
 337
 338
 339
 340
 341
 342
 343
 344
 345
 346
 347
 348
 349
 350
 351
 352
 353
 354
 355
 356
 357
 358
 359
 360
 361
 362
 363
 364
 365
 366
 367
 368
 369
 370
 371
 372
 373
 374
 375
 376
 377
 378
 379
 380
 381
 382
 383
 384
 385
 386
 387
 388
 389
 390
 391
 392
 393
 394
 395
 396
 397
 398
 399
 400
 401
 402
 403
 404
 405
 406
 407
 408
 409
 410
 411
 412
 413
 414
 415
 416
 417
 418
 419
 420
 421
 422
 423
 424
 425
 426
 427
 428
 429
 430
 431
 432
 433
 434
 435
 436
 437
 438
 439
 440
 441
 442
 443
 444
 445
 446
 447
 448
 449
 450
 451
 452
 453
 454
 455
 456
 457
 458
 459
 460
 461
 462
 463
 464
 465
 466
 467
 468
 469
 470
 471
 472
 473
 474
 475
 476
 477
 478
 479
 480
 481
 482
 483
 484
 485
 486
 487
 488
 489
 490
 491
 492
 493
 494
 495
 496
 497
 498
 499
 500
 501
 502
 503
 504
 505
 506
 507
 508
 509
 510
 511
 512
 513
 514
 515
 516
 517
 518
 519
 520
 521
 522
 523
 524
 525
 526
 527
 528
 529
 530
 531
 532
 533
 534
 535
 536
 537
 538
 539
 540
 541
 542
 543
 544
 545
 546
 547
 548
 549
 550
 551
 552
 553
 554
 555
 556
 557
 558
 559
 560
 561
 562
 563
 564
 565
 566
 567
 568
 569
 570
 571
 572
 573
 574
 575
 576
 577
 578
 579
 580
 581
 582
 583
 584
 585
 586
 587
 588
 589
 590
 591
 592
 593
 594
 595
 596
 597
 598
 599
 600
 601
 602
 603
 604
 605
 606
 607
 608
 609
 610
 611
 612
 613
 614
 615
 616
 617
 618
 619
 620
 621
 622
 623
 624
 625
 626
 627
 628
 629
 630
 631
 632
 633
 634
 635
 636
 637
 638
 639
 640
 641
 642
 643
 644
 645
 646
 647
 648
 649
 650
 651
 652
 653
 654
 655
 656
 657
 658
 659
 660
 661
 662
 663
 664
 665
 666
 667
 668
 669
 670
 671
 672
 673
 674
 675
 676
 677
 678
 679
 680
 681
 682
 683
 684
 685
 686
 687
 688
 689
 690
 691
 692
 693
 694
 695
 696
 697
 698
 699
 700
 701
 702
 703
 704
 705
 706
 707
 708
 709
 710
 711
 712
 713
 714
 715
 716
 717
 718
 719
 720
 721
 722
 723
 724
 725
 726
 727
 728
 729
 730
 731
 732
 733
 734
 735
 736
 737
 738
 739
 740
 741
 742
 743
 744
 745
 746
 747
 748
 749
 750
 751
 752
 753
 754
 755
 756
 757
 758
 759
 760
 761
 762
 763
 764
 765
 766
 767
 768
 769
 770
 771
 772
 773
 774
 775
 776
 777
 778
 779
 780
 781
 782
 783
 784
 785
 786
 787
 788
 789
 790
 791
 792
 793
 794
 795
 796
 797
 798
 799
 800
 801
 802
 803
 804
 805
 806
 807
 808
 809
 810
 811
 812
 813
 814
 815
 816
 817
 818
 819
 820
 821
 822
 823
 824
 825
 826
 827
 828
 829
 830
 831
 832
 833
 834
 835
 836
 837
 838
 839
 840
 841
 842
 843
 844
 845
 846
 847
 848
 849
 850
 851
 852
 853
 854
 855
 856
 857
 858
 859
 860
 861
 862
 863
 864
 865
 866
 867
 868
 869
 870
 871
 872
 873
 874
 875
 876
 877
 878
 879
 880
 881
 882
 883
 884
 885
 886
 887
 888
 889
 890
 891
 892
 893
 894
 895
 896
 897
 898
 899
 900
 901
 902
 903
 904
 905
 906
 907
 908
 909
 910
 911
 912
 913
 914
 915
 916
 917
 918
 919
 920
 921
 922
 923
 924
 925
 926
 927
 928
 929
 930
 931
 932
 933
 934
 935
 936
 937
 938
 939
 940
 941
 942
 943
 944
 945
 946
 947
 948
 949
 950
 951
 952
 953
 954
 955
 956
 957
 958
 959
 960
 961
 962
 963
 964
 965
 966
 967
 968
 969
 970
 971
 972
 973
 974
 975
 976
 977
 978
 979
 980
 981
 982
 983
 984
 985
 986
 987
 988
 989
 990
 991
 992
 993
 994
 995
 996
 997
 998
 999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
class Trainer(BaseTrainer):
    r"""Class to set the of attributes that will be used during the
    training process.

    Parameters
    ----------
    model: `WideDeep`
        An object of class `WideDeep`
    objective: str
        Defines the objective, loss or cost function. <br/>

        Param aliases: `loss_function`, `loss_fn`, `loss`,
        `cost_function`, `cost_fn`, `cost`. <br/>

        Possible values are:

        - `binary`, aliases: `logistic`, `binary_logloss`, `binary_cross_entropy`

        - `binary_focal_loss`

        - `multiclass`, aliases: `multi_logloss`, `cross_entropy`, `categorical_cross_entropy`,

        - `multiclass_focal_loss`

        - `regression`, aliases: `mse`, `l2`, `mean_squared_error`

        - `mean_absolute_error`, aliases: `mae`, `l1`

        - `mean_squared_log_error`, aliases: `msle`

        - `root_mean_squared_error`, aliases:  `rmse`

        - `root_mean_squared_log_error`, aliases: `rmsle`

        - `zero_inflated_lognormal`, aliases: `ziln`

        - `quantile`

        - `tweedie`

        - `multitarget`, aliases: `multi_target`

        **NOTE**: For `multitarget` a custom loss function must be passed
    custom_loss_function: `nn.Module`. Optional, default = None
        It is possible to pass a custom loss function. See for example
        `pytorch_widedeep.losses.FocalLoss` for the required structure of the
        object or the Examples section in this documentation or in the repo.
        Note that if `custom_loss_function` is not `None`, `objective` must
        be _'binary'_, _'multiclass'_ or _'regression'_, consistent with the
        loss function
    optimizers: `Optimizer` or dict. Optional, default=None
        - An instance of Pytorch's `Optimizer` object
          (e.g. `torch.optim.Adam()`) or
        - a dictionary where there keys are the model components (i.e.
          _'wide'_, _'deeptabular'_, _'deeptext'_, _'deepimage'_
          and/or _'deephead'_)  and the values are the corresponding
          optimizers or list of optimizers if multiple models are used for
          the given data mode (e.g. two text columns/models for the deeptext
          component). If multiple optimizers are used the
          dictionary **MUST** contain an optimizer per model component.

        if no optimizers are passed it will default to `Adam` for all
        model components
    lr_schedulers: `LRScheduler` or dict. Optional, default=None
        - An instance of Pytorch's `LRScheduler` object (e.g
          `torch.optim.lr_scheduler.StepLR(opt, step_size=5)`) or
        - a dictionary where there keys are the model componenst (i.e. _'wide'_,
          _'deeptabular'_, _'deeptext'_, _'deepimage'_ and/or _'deephead'_) and the
          values are the corresponding learning rate schedulers or list of
            learning rate schedulers if multiple models are used for the given
            data mode (e.g. two text columns/models for the deeptext component).
    initializers: `Initializer` or dict. Optional, default=None
        - An instance of an `Initializer` object see `pytorch-widedeep.initializers` or
        - a dictionary where there keys are the model components (i.e. _'wide'_,
          _'deeptabular'_, _'deeptext'_, _'deepimage'_ and/or _'deephead'_)
          and the values are the corresponding initializers or list of
            initializers if multiple models are used for the given data mode (e.g.
            two text columns/models for the deeptext component).
    transforms: List. Optional, default=None
        List with `torchvision.transforms` to be applied to the image
        component of the model (i.e. `deepimage`) See
        [torchvision transforms](https://pytorch.org/docs/stable/torchvision/transforms.html).
    callbacks: List. Optional, default=None
        List with `Callback` objects. The three callbacks available in
        `pytorch-widedeep` are: `LRHistory`, `ModelCheckpoint` and
        `EarlyStopping`. The `History` and the `LRShedulerCallback` callbacks
        are used by default. This can also be a custom callback as long as
        the object of type `Callback`. See
        `pytorch_widedeep.callbacks.Callback` or the examples folder in the
        repo.
    metrics: List. Optional, default=None
        - List of objects of type `Metric`. Metrics available are:
          `Accuracy`, `Precision`, `Recall`, `FBetaScore`,
          `F1Score` and `R2Score`. This can also be a custom metric as long
          as it is an object of type `Metric`. See
          `pytorch_widedeep.metrics.Metric` or the examples folder in the
          repo
        - List of objects of type `torchmetrics.Metric`. This can be any
          metric from torchmetrics library
          [Examples](https://torchmetrics.readthedocs.io/en/latest/).
          This can also be a custom metric as long as
          it is an object of type `Metric`. See
          [the instructions](https://torchmetrics.readthedocs.io/en/latest/).
    verbose: int, default=1
        Verbosity level. If set to 0 nothing will be printed during training
    seed: int, default=1
        Random seed to be used internally for train/test split

    Other Parameters
    ----------------
    **kwargs: dict
        Other infrequently used arguments that can also be passed as kwargs are:

        - **device**: `str`<br/>
            string indicating the device. One of _'cpu'_, _'gpu'_ or 'mps' if
            run on a Mac with Apple silicon or AMD GPU(s)

        - **num_workers**: `int`<br/>
            number of workers to be used internally by the data loaders

        - **lambda_sparse**: `float`<br/>
            lambda sparse parameter in case the `deeptabular` component is `TabNet`

        - **class_weight**: `List[float]`<br/>
            This is the `weight` or `pos_weight` parameter in
            `CrossEntropyLoss` and `BCEWithLogitsLoss`, depending on whether
        - **reducelronplateau_criterion**: `str`
            This sets the criterion that will be used by the lr scheduler to
            take a step: One of _'loss'_ or _'metric'_. The ReduceLROnPlateau
            learning rate is a bit particular.

    Attributes
    ----------
    cyclic_lr: bool
        Attribute that indicates if any of the lr_schedulers is cyclic_lr
        (i.e. `CyclicLR` or
        `OneCycleLR`). See [Pytorch schedulers](https://pytorch.org/docs/stable/optim.html).
    feature_importance: dict
        dict where the keys are the column names and the values are the
        corresponding feature importances. This attribute will only exist
        if the `deeptabular` component is a Tabnet model.

    Examples
    --------
    >>> import torch
    >>> from torchvision.transforms import ToTensor
    >>>
    >>> # wide deep imports
    >>> from pytorch_widedeep.callbacks import EarlyStopping, LRHistory
    >>> from pytorch_widedeep.initializers import KaimingNormal, KaimingUniform, Normal, Uniform
    >>> from pytorch_widedeep.models import TabResnet, Vision, BasicRNN, Wide, WideDeep
    >>> from pytorch_widedeep import Trainer
    >>>
    >>> embed_input = [(u, i, j) for u, i, j in zip(["a", "b", "c"][:4], [4] * 3, [8] * 3)]
    >>> column_idx = {k: v for v, k in enumerate(["a", "b", "c"])}
    >>> wide = Wide(10, 1)
    >>>
    >>> # build the model
    >>> deeptabular = TabResnet(blocks_dims=[8, 4], column_idx=column_idx, cat_embed_input=embed_input)
    >>> deeptext = BasicRNN(vocab_size=10, embed_dim=4, padding_idx=0)
    >>> deepimage = Vision()
    >>> model = WideDeep(wide=wide, deeptabular=deeptabular, deeptext=deeptext, deepimage=deepimage)
    >>>
    >>> # set optimizers and schedulers
    >>> wide_opt = torch.optim.Adam(model.wide.parameters())
    >>> deep_opt = torch.optim.AdamW(model.deeptabular.parameters())
    >>> text_opt = torch.optim.Adam(model.deeptext.parameters())
    >>> img_opt = torch.optim.AdamW(model.deepimage.parameters())
    >>>
    >>> wide_sch = torch.optim.lr_scheduler.StepLR(wide_opt, step_size=5)
    >>> deep_sch = torch.optim.lr_scheduler.StepLR(deep_opt, step_size=3)
    >>> text_sch = torch.optim.lr_scheduler.StepLR(text_opt, step_size=5)
    >>> img_sch = torch.optim.lr_scheduler.StepLR(img_opt, step_size=3)
    >>>
    >>> optimizers = {"wide": wide_opt, "deeptabular": deep_opt, "deeptext": text_opt, "deepimage": img_opt}
    >>> schedulers = {"wide": wide_sch, "deeptabular": deep_sch, "deeptext": text_sch, "deepimage": img_sch}
    >>>
    >>> # set initializers and callbacks
    >>> initializers = {"wide": Uniform, "deeptabular": Normal, "deeptext": KaimingNormal, "deepimage": KaimingUniform}
    >>> transforms = [ToTensor]
    >>> callbacks = [LRHistory(n_epochs=4), EarlyStopping]
    >>>
    >>> # set the trainer
    >>> trainer = Trainer(model, objective="regression", initializers=initializers, optimizers=optimizers,
    ... lr_schedulers=schedulers, callbacks=callbacks, transforms=transforms)
    """

    @alias(  # noqa: C901
        "objective",
        ["loss_function", "loss_fn", "loss", "cost_function", "cost_fn", "cost"],
    )
    @alias("metrics", ["train_metrics"])
    def __init__(
        self,
        model: WideDeep,
        objective: str,
        custom_loss_function: Optional[nn.Module] = None,
        optimizers: Optional[
            Union[Optimizer, Dict[str, Union[Optimizer, List[Optimizer]]]]
        ] = None,
        lr_schedulers: Optional[
            Union[LRScheduler, Dict[str, Union[LRScheduler, List[LRScheduler]]]]
        ] = None,
        initializers: Optional[
            Union[Initializer, Dict[str, Union[Initializer, List[Initializer]]]]
        ] = None,
        transforms: Optional[List[Transforms]] = None,
        callbacks: Optional[List[Callback]] = None,
        metrics: Optional[Union[List[Metric], List[TorchMetric]]] = None,
        eval_metrics: Optional[Union[List[Metric], List[TorchMetric]]] = None,
        verbose: int = 1,
        seed: int = 1,
        **kwargs,
    ):
        super().__init__(
            model=model,
            objective=objective,
            custom_loss_function=custom_loss_function,
            optimizers=optimizers,
            lr_schedulers=lr_schedulers,
            initializers=initializers,
            transforms=transforms,
            callbacks=callbacks,
            metrics=metrics,
            eval_metrics=eval_metrics,
            verbose=verbose,
            seed=seed,
            **kwargs,
        )

    @alias("finetune", ["warmup"])
    @alias("train_dataloader", ["custom_dataloader"])
    @alias("eval_dataloader", ["custom_eval_dataloader"])
    def fit(  # noqa: C901
        self,
        X_wide: Optional[np.ndarray] = None,
        X_tab: Optional[Union[np.ndarray, List[np.ndarray]]] = None,
        X_text: Optional[Union[np.ndarray, List[np.ndarray]]] = None,
        X_img: Optional[Union[np.ndarray, List[np.ndarray]]] = None,
        X_train: Optional[Dict[str, Union[np.ndarray, List[np.ndarray]]]] = None,
        X_val: Optional[Dict[str, Union[np.ndarray, List[np.ndarray]]]] = None,
        val_split: Optional[float] = None,
        target: Optional[np.ndarray] = None,
        n_epochs: int = 1,
        validation_freq: int = 1,
        batch_size: int = 32,
        train_dataloader: Optional[CustomDataLoader] = None,
        eval_dataloader: Optional[CustomDataLoader] = None,
        feature_importance_sample_size: Optional[int] = None,
        finetune: bool = False,
        **kwargs,
    ):
        r"""Fit method.

        The input datasets can be passed either directly via numpy arrays
        (`X_wide`, `X_tab`, `X_text` or `X_img`) or alternatively, in
        dictionaries (`X_train` or `X_val`).

        Parameters
        ----------
        X_wide: np.ndarray, Optional. default=None
            Input for the `wide` model component.
            See `pytorch_widedeep.preprocessing.WidePreprocessor`
        X_tab: np.ndarray, Optional. default=None
            Input for the `deeptabular` model component.
            See `pytorch_widedeep.preprocessing.TabPreprocessor`. If multiple
            tabular models are used for different columns, this should be a
            list of numpy arrays
        X_text: Union[np.ndarray, List[np.ndarray]], Optional. default=None
            Input for the `deeptext` model component.
            See `pytorch_widedeep.preprocessing.TextPreprocessor`.
            If multiple text columns/models are used, this should be a list of
            numpy arrays
        X_img: np.ndarray, Optional. default=None
            Input for the `deepimage` model component.
            See `pytorch_widedeep.preprocessing.ImagePreprocessor`.
            If multiple image columns/models are used, this should be a list of
            numpy arrays
        X_train: Dict, Optional. default=None
            The training dataset can also be passed in a dictionary. Keys are
            _'X_wide'_, _'X_tab'_, _'X_text'_, _'X_img'_ and _'target'_. Values
            are the corresponding matrices. Note that of multiple text or image
            columns/models are used, the corresponding values should be lists
            of numpy arrays
        X_val: Dict, Optional. default=None
            The validation dataset can also be passed in a dictionary. Keys
            are _'X_wide'_, _'X_tab'_, _'X_text'_, _'X_img'_ and _'target'_.
            Values are the corresponding matrices. Note that of multiple text
            or image columns/models are used, the corresponding values should
            be lists of numpy arrays
        val_split: float, Optional. default=None
            train/val split fraction
        target: np.ndarray, Optional. default=None
            target values
        n_epochs: int, default=1
            number of epochs
        validation_freq: int, default=1
            epochs validation frequency
        batch_size: int, default=32
            batch size
        custom_dataloader: `DataLoader`, Optional, default=None
            object of class `torch.utils.data.DataLoader`. Available
            predefined dataloaders are in `pytorch-widedeep.dataloaders`.If
            `None`, a standard torch `DataLoader` is used.
        finetune: bool, default=False
            fine-tune individual model components. This functionality can also
            be used to 'warm-up' (and hence the alias `warmup`) individual
            components before the joined training starts, and hence its
            alias. See the Examples folder in the repo for more details

            `pytorch_widedeep` implements 3 fine-tune routines.

            - fine-tune all trainable layers at once. This routine is
              inspired by the work of Howard & Sebastian Ruder 2018 in their
              [ULMfit paper](https://arxiv.org/abs/1801.06146). Using a
              Slanted Triangular learing (see
              [Leslie N. Smith paper](https://arxiv.org/pdf/1506.01186.pdf) ) ,
              the process is the following: *i*) the learning rate will
              gradually increase for 10% of the training steps from max_lr/10
              to max_lr. *ii*) It will then gradually decrease to max_lr/10
              for the remaining 90% of the steps. The optimizer used in the
              process is `Adam`.

            and two gradual fine-tune routines, where only certain layers are
            trained at a time.

            - The so called `Felbo` gradual fine-tune rourine, based on the the
              Felbo et al., 2017 [DeepEmoji paper](https://arxiv.org/abs/1708.00524).
            - The `Howard` routine based on the work of Howard & Sebastian Ruder 2018 in their
              [ULMfit paper](https://arxiv.org/abs/1801.06146>).

            For details on how these routines work, please see the Examples
            section in this documentation and the Examples folder in the repo. <br/>
            Param Alias: `warmup`

        Other Parameters
        ----------------
        **kwargs:
            Other keyword arguments are:

            - **DataLoader related parameters**:<br/>
                For example,  `sampler`, `batch_sampler`, `collate_fn`, etc.
                Please, see the pytorch
                [DataLoader docs](https://pytorch.org/docs/stable/data.html#torch.utils.data.DataLoader)
                for details.

            - **Finetune related parameters**:<br/>
                see the source code at `pytorch_widedeep._finetune`. Namely, these are:

                - `finetune_epochs` (`int`):
                    number of epochs use for fine tuning
                - `finetune_max_lr` (`float`):
                   max lr during fine tuning
                - `routine` (`str`):
                   one of _'howard'_ or _'felbo'_
                - `deeptabular_gradual` (`bool`):
                   boolean indicating if the `deeptabular` component will be fine tuned gradually
                - `deeptabular_layers` (`Optional[Union[List[nn.Module], List[List[nn.Module]]]]`):
                   List of pytorch modules indicating the layers of the
                   `deeptabular` that will be fine tuned
                - `deeptabular_max_lr` (`Union[float, List[float]]`):
                   max lr for the `deeptabular` componet during fine tuning
                - `deeptext_gradual` (`bool`):
                   same as `deeptabular_gradual` but for the `deeptext` component
                - `deeptext_layers` (`Optional[Union[List[nn.Module], List[List[nn.Module]]]]`):
                   same as `deeptabular_gradual` but for the `deeptext` component.
                   If there are multiple text columns/models, this should be a list of lists
                - `deeptext_max_lr` (`Union[float, List[float]]`):
                   same as `deeptabular_gradual` but for the `deeptext` component
                   If there are multiple text columns/models, this should be a list of floats
                - `deepimage_gradual` (`bool`):
                   same as `deeptext_layers` but for the `deepimage` component
                - `deepimage_layers` (`Optional[Union[List[nn.Module], List[List[nn.Module]]]]`):
                   same as `deeptext_layers` but for the `deepimage` component
                - `deepimage_max_lr` (`Union[float, List[float]]`):
                    same as `deeptext_layers` but for the `deepimage` component

        Examples
        --------

        For a series of comprehensive examples on how to use the `fit` method, please see the
        [Examples](https://github.com/jrzaurin/pytorch-widedeep/tree/master/examples)
        folder in the repo
        """
        dataloader_args, finetune_args = self._extract_kwargs(kwargs)
        self.batch_size = batch_size
        train_set, eval_set = wd_train_val_split(
            self.seed,
            self.method,  # type: ignore
            X_wide,
            X_tab,
            X_text,
            X_img,
            X_train,
            X_val,
            val_split,
            target,
            self.transforms,
        )
        train_loader = self._set_dataloader(
            train_dataloader, train_set, batch_size, dataloader_args
        )
        eval_loader = (
            self._set_dataloader(eval_dataloader, eval_set, batch_size, dataloader_args)
            if eval_set is not None
            else None
        )

        if finetune:
            self.with_finetuning: bool = True
            self._do_finetune(train_loader, **finetune_args)
            if self.verbose:
                print(
                    "Fine-tuning (or warmup) of individual components completed. "
                    "Training the whole model for {} epochs".format(n_epochs)
                )
        else:
            self.with_finetuning = False

        self.callback_container.on_train_begin(
            {
                "batch_size": batch_size,
                "train_steps": len(train_loader),
                "n_epochs": n_epochs,
            }
        )
        for epoch in range(n_epochs):
            epoch_logs = self._train_epoch(train_loader, epoch)
            if eval_loader is not None and epoch % validation_freq == (
                validation_freq - 1
            ):
                epoch_logs, on_epoch_end_metric = self._eval_epoch(
                    eval_loader, epoch_logs
                )
            else:
                on_epoch_end_metric = None
                if self.reducelronplateau:
                    raise NotImplementedError(
                        "ReduceLROnPlateau scheduler can be used only with validation data."
                    )
            self.callback_container.on_epoch_end(epoch, epoch_logs, on_epoch_end_metric)
            if self.early_stop:
                # self.callback_container.on_train_end(epoch_logs)
                break

        self.callback_container.on_train_end(epoch_logs)
        if feature_importance_sample_size is not None:
            self.feature_importance = FeatureImportance(
                self.device, feature_importance_sample_size
            ).feature_importance(train_loader, self.model)
        self._restore_best_weights()
        self.model.train()

    def predict(  # type: ignore[override, return]
        self,
        X_wide: Optional[np.ndarray] = None,
        X_tab: Optional[Union[np.ndarray, List[np.ndarray]]] = None,
        X_text: Optional[Union[np.ndarray, List[np.ndarray]]] = None,
        X_img: Optional[Union[np.ndarray, List[np.ndarray]]] = None,
        X_test: Optional[Dict[str, Union[np.ndarray, List[np.ndarray]]]] = None,
        batch_size: Optional[int] = None,
    ) -> np.ndarray:
        r"""Returns the predictions

        The input datasets can be passed either directly via numpy arrays
        (`X_wide`, `X_tab`, `X_text` or `X_img`) or alternatively, in
        a dictionary (`X_test`)


        Parameters
        ----------
        X_wide: np.ndarray, Optional. default=None
            Input for the `wide` model component.
            See `pytorch_widedeep.preprocessing.WidePreprocessor`
        X_tab: np.ndarray or List[np.ndarray], Optional. default=None
            Input for the `deeptabular` model component.
            See `pytorch_widedeep.preprocessing.TabPreprocessor`
        X_text: np.ndarray or List[np.ndarray], Optional. default=None
            Input for the `deeptext` model component.
            See `pytorch_widedeep.preprocessing.TextPreprocessor`
        X_img: np.ndarray or List[np.ndarray], Optional. default=None
            Input for the `deepimage` model component.
            See `pytorch_widedeep.preprocessing.ImagePreprocessor`
        X_test: Dict, Optional. default=None
            The test dataset can also be passed in a dictionary. Keys are
            `X_wide`, _'X_tab'_, _'X_text'_, _'X_img'_ and _'target'_. Values
            are the corresponding matrices.
        batch_size: int, default = 256
            If a trainer is used to predict after having trained a model, the
            `batch_size` needs to be defined as it will not be defined as
            the `Trainer` is instantiated

        Returns
        -------
        np.ndarray:
            array with the predictions
        """
        preds_l = self._predict(X_wide, X_tab, X_text, X_img, X_test, batch_size)
        if self.method == "regression":
            return np.vstack(preds_l).squeeze(1)
        if self.method == "binary":
            preds = np.vstack(preds_l).squeeze(1)
            return (preds > 0.5).astype("int")
        if self.method == "qregression":
            return np.vstack(preds_l)
        if self.method == "multiclass":
            preds = np.vstack(preds_l)
            return np.argmax(preds, 1)  # type: ignore[return-value]
        if self.method == "multitarget":
            if self.loss_fn.__class__.__name__ in [
                "MultiTargetClassificationLoss",
                "MutilTargetRegressionAndClassificationLoss",
            ]:
                raise ValueError(
                    "MultiTargetClassificationLoss and MutilTargetRegressionAndClassificationLoss "
                    "are not supported by predict method. Please use predict_proba method instead."
                )
            return np.vstack(preds_l)

    def predict_uncertainty(  # type: ignore[return]
        self,
        X_wide: Optional[np.ndarray] = None,
        X_tab: Optional[Union[np.ndarray, List[np.ndarray]]] = None,
        X_text: Optional[Union[np.ndarray, List[np.ndarray]]] = None,
        X_img: Optional[Union[np.ndarray, List[np.ndarray]]] = None,
        X_test: Optional[Dict[str, Union[np.ndarray, List[np.ndarray]]]] = None,
        batch_size: Optional[int] = None,
        uncertainty_granularity: int = 1000,
    ) -> np.ndarray:
        r"""Returns the predicted ucnertainty of the model for the test dataset
        using a Monte Carlo method during which dropout layers are activated
        in the evaluation/prediction phase and each sample is predicted N
        times (`uncertainty_granularity` times).

        This is based on
        [Dropout as a Bayesian Approximation: Representing
        Model Uncertainty in Deep Learning](https://arxiv.org/abs/1506.02142?context=stat).

        Parameters
        ----------
        X_wide: np.ndarray, Optional. default=None
            Input for the `wide` model component.
            See `pytorch_widedeep.preprocessing.WidePreprocessor`
        X_tab: np.ndarray or List[np.ndarray], Optional. default=None
            Input for the `deeptabular` model component.
            See `pytorch_widedeep.preprocessing.TabPreprocessor`
        X_text: np.ndarray or List[np.ndarray], Optional. default=None
            Input for the `deeptext` model component.
            See `pytorch_widedeep.preprocessing.TextPreprocessor`
        X_img: np.ndarray or List[np.ndarray], Optional. default=None
            Input for the `deepimage` model component.
            See `pytorch_widedeep.preprocessing.ImagePreprocessor`
        X_test: Dict, Optional. default=None
            The test dataset can also be passed in a dictionary. Keys are
            _'X_wide'_, _'X_tab'_, _'X_text'_, _'X_img'_ and _'target'_. Values
            are the corresponding matrices.
        batch_size: int, default = 256
            If a trainer is used to predict after having trained a model, the
            `batch_size` needs to be defined as it will not be defined as
            the `Trainer` is instantiated
        uncertainty_granularity: int default = 1000
            number of times the model does prediction for each sample

        Returns
        -------
        np.ndarray:
            - if `method = regression`, it will return an array with `(max, min, mean, stdev)`
              values for each sample.
            - if `method = binary` it will return an array with
              `(mean_cls_0_prob, mean_cls_1_prob, predicted_cls)` for each sample.
            - if `method = multiclass` it will return an array with
              `(mean_cls_0_prob, mean_cls_1_prob, mean_cls_2_prob, ... , predicted_cls)`
              values for each sample.

        """
        preds_l = self._predict(
            X_wide,
            X_tab,
            X_text,
            X_img,
            X_test,
            batch_size,
            uncertainty_granularity,
            uncertainty=True,
        )
        preds = np.vstack(preds_l)
        samples_num = int(preds.shape[0] / uncertainty_granularity)
        if self.method == "regression":
            preds = preds.squeeze(1)
            preds = preds.reshape((uncertainty_granularity, samples_num))
            return np.array(
                (
                    preds.max(axis=0),
                    preds.min(axis=0),
                    preds.mean(axis=0),
                    preds.std(axis=0),
                )
            ).T
        if self.method == "qregression":
            raise ValueError(
                "Currently predict_uncertainty is not supported for qregression method"
            )
        if self.method == "binary":
            preds = preds.squeeze(1)
            preds = preds.reshape((uncertainty_granularity, samples_num))
            preds = preds.mean(axis=0)
            probs = np.zeros([preds.shape[0], 3])
            probs[:, 0] = 1 - preds
            probs[:, 1] = preds
            return probs
        if self.method == "multiclass":
            preds = preds.reshape(uncertainty_granularity, samples_num, preds.shape[1])
            preds = preds.mean(axis=0)
            preds = np.hstack((preds, np.vstack(np.argmax(preds, 1))))
            return preds

        if self.method == "multitarget":
            raise ValueError(
                "Currently predict_uncertainty is not supported for multitarget method"
            )

    def predict_proba(  # type: ignore[override, return]  # noqa: C901
        self,
        X_wide: Optional[np.ndarray] = None,
        X_tab: Optional[Union[np.ndarray, List[np.ndarray]]] = None,
        X_text: Optional[Union[np.ndarray, List[np.ndarray]]] = None,
        X_img: Optional[Union[np.ndarray, List[np.ndarray]]] = None,
        X_test: Optional[Dict[str, Union[np.ndarray, List[np.ndarray]]]] = None,
        batch_size: Optional[int] = None,
    ) -> np.ndarray:
        r"""Returns the predicted probabilities for the test dataset for  binary
        and multiclass methods

        The input datasets can be passed either directly via numpy arrays
        (`X_wide`, `X_tab`, `X_text` or `X_img`) or alternatively, in
        a dictionary (`X_test`)

        Parameters
        ----------
        X_wide: np.ndarray, Optional. default=None
            Input for the `wide` model component.
            See `pytorch_widedeep.preprocessing.WidePreprocessor`
        X_tab: np.ndarray or List[np.ndarray], Optional. default=None
            Input for the `deeptabular` model component.
            See `pytorch_widedeep.preprocessing.TabPreprocessor`
        X_text: np.ndarray or List[np.ndarray], Optional. default=None
            Input for the `deeptext` model component.
            See `pytorch_widedeep.preprocessing.TextPreprocessor`
        X_img: np.ndarray or List[np.ndarray], Optional. default=None
            Input for the `deepimage` model component.
            See `pytorch_widedeep.preprocessing.ImagePreprocessor`
        X_test: Dict, Optional. default=None
            The test dataset can also be passed in a dictionary. Keys are
            `X_wide`, _'X_tab'_, _'X_text'_, _'X_img'_ and _'target'_. Values
            are the corresponding matrices.
        batch_size: int, default = 256
            If a trainer is used to predict after having trained a model, the
            `batch_size` needs to be defined as it will not be defined as
            the `Trainer` is instantiated

        Returns
        -------
        np.ndarray
            array with the probabilities per class
        """

        preds_l = self._predict(X_wide, X_tab, X_text, X_img, X_test, batch_size)
        if self.method == "binary":
            preds = np.vstack(preds_l).squeeze(1)
            probs = np.zeros([preds.shape[0], 2])
            probs[:, 0] = 1 - preds
            probs[:, 1] = preds
            return probs
        if self.method == "multiclass":
            return np.vstack(preds_l)
        if self.method == "multitarget":
            return np.vstack(preds_l)

    def explain(self, X_tab: np.ndarray, save_step_masks: Optional[bool] = None):
        # TO DO: Add docs to this, to the feat imp parameter and the all
        # related classes
        explainer = Explainer(self.device)

        res = explainer.explain(
            self.model, X_tab, self.num_workers, self.batch_size, save_step_masks
        )

        return res

    def save(
        self,
        path: str,
        save_state_dict: bool = False,
        save_optimizer: bool = False,
        model_filename: str = "wd_model.pt",
    ):
        r"""Saves the model, training and evaluation history, and the
        `feature_importance` attribute (if the `deeptabular` component is a
        Tabnet model) to disk

        The `Trainer` class is built so that it 'just' trains a model. With
        that in mind, all the torch related parameters (such as optimizers,
        learning rate schedulers, initializers, etc) have to be defined
        externally and then passed to the `Trainer`. As a result, the
        `Trainer` does not generate any attribute or additional data
        products that need to be saved other than the `model` object itself,
        which can be saved as any other torch model (e.g. `torch.save(model,
        path)`).

        The exception is Tabnet. If the `deeptabular` component is a Tabnet
        model, an attribute (a dict) called `feature_importance` will be
        created at the end of the training process. Therefore, a `save`
        method was created that will save the feature importance dictionary
        to a json file and, since we are here, the model weights, training
        history and learning rate history.

        Parameters
        ----------
        path: str
            path to the directory where the model and the feature importance
            attribute will be saved.
        save_state_dict: bool, default = False
            Boolean indicating whether to save directly the model
            (and optimizer) or the model's (and optimizer's) state
            dictionary
        save_optimizer: bool, default = False
            Boolean indicating whether to save the optimizer
        model_filename: str, Optional, default = "wd_model.pt"
            filename where the model weights will be store
        """

        self._save_history(path)

        self._save_model_and_optimizer(
            path, save_state_dict, save_optimizer, model_filename
        )

        if self.model.is_tabnet:
            with open(Path(path) / "feature_importance.json", "w") as fi:
                json.dump(self.feature_importance, fi)

    def _set_dataloader(
        self,
        dataloader: Optional[CustomDataLoader],
        dataset: WideDeepDataset,
        batch_size: int,
        dataloader_args: Dict[str, Any],
    ) -> Union[DataLoader, CustomDataLoader]:
        if dataloader is not None:
            dataloader.set_dataset(dataset)
            return dataloader
        else:
            # var name 'loader' to avoid reassigment and type errors
            loader = DataLoader(
                dataset=dataset,
                batch_size=batch_size,
                num_workers=self.num_workers,
                **dataloader_args,
            )
        return loader

    @alias("n_epochs", ["finetune_epochs", "warmup_epochs"])
    @alias("max_lr", ["finetune_max_lr", "warmup_max_lr"])
    def _do_finetune(
        self,
        loader: DataLoader,
        n_epochs: int = 5,
        max_lr: float = 0.01,
        routine: Literal["howard", "felbo"] = "howard",
        deeptabular_gradual: bool = False,
        deeptabular_layers: Optional[
            Union[List[nn.Module], List[List[nn.Module]]]
        ] = None,
        deeptabular_max_lr: Union[float, List[float]] = 0.01,
        deeptext_gradual: bool = False,
        deeptext_layers: Optional[Union[List[nn.Module], List[List[nn.Module]]]] = None,
        deeptext_max_lr: Union[float, List[float]] = 0.01,
        deepimage_gradual: bool = False,
        deepimage_layers: Optional[
            Union[List[nn.Module], List[List[nn.Module]]]
        ] = None,
        deepimage_max_lr: Union[float, List[float]] = 0.01,
    ):
        r"""
        Simple wrap-up to individually fine-tune model components
        """
        if self.model.deephead is not None:
            raise ValueError(
                "Currently warming up is only supported without a fully connected 'DeepHead'"
            )

        finetuner = FineTune(self.loss_fn, self.metric, self.method, self.verbose)  # type: ignore[arg-type]
        if self.model.wide:
            finetuner.finetune_all(self.model.wide, "wide", loader, n_epochs, max_lr)

        if self.model.deeptabular:
            if deeptabular_gradual:
                assert (
                    deeptabular_layers is not None
                ), "deeptabular_layers must be passed if deeptabular_gradual=True"
                finetuner.finetune_gradual(
                    self.model.deeptabular,
                    "deeptabular",
                    loader,
                    deeptabular_max_lr,
                    deeptabular_layers,
                    routine,
                )
            else:
                finetuner.finetune_all(
                    self.model.deeptabular, "deeptabular", loader, n_epochs, max_lr
                )

        if self.model.deeptext:
            if deeptext_gradual:
                assert (
                    deeptext_layers is not None
                ), "deeptext_layers must be passed if deeptext_gradual=True"
                finetuner.finetune_gradual(
                    self.model.deeptext,
                    "deeptext",
                    loader,
                    deeptext_max_lr,
                    deeptext_layers,
                    routine,
                )
            else:
                finetuner.finetune_all(
                    self.model.deeptext, "deeptext", loader, n_epochs, max_lr
                )

        if self.model.deepimage:
            if deepimage_gradual:
                assert (
                    deepimage_layers is not None
                ), "deepimage_layers must be passed if deepimage_gradual=True"
                finetuner.finetune_gradual(
                    self.model.deepimage,
                    "deepimage",
                    loader,
                    deepimage_max_lr,
                    deepimage_layers,
                    routine,
                )
            else:
                finetuner.finetune_all(
                    self.model.deepimage, "deepimage", loader, n_epochs, max_lr
                )

    def _train_epoch(
        self,
        train_loader: DataLoader,
        epoch: int,
    ):
        epoch_logs: Dict[str, float] = {}
        self.callback_container.on_epoch_begin(epoch, logs=epoch_logs)
        self.train_running_loss = 0.0

        train_steps = len(train_loader)
        with trange(train_steps, disable=self.verbose != 1) as t:
            for batch_idx, (data, targett) in zip(t, train_loader):
                t.set_description("epoch %i" % (epoch + 1))
                train_score, train_loss = self._train_step(data, targett, batch_idx)
                print_loss_and_metric(t, train_loss, train_score)
                self.callback_container.on_batch_end(batch=batch_idx)

        epoch_logs = save_epoch_logs(epoch_logs, train_loss, train_score, "train")

        return epoch_logs

    def _train_step(
        self,
        data: Dict[str, Union[Tensor, List[Tensor]]],
        target: Tensor,
        batch_idx: int,
    ):

        self.model.train()

        X: Dict[str, Union[Tensor, List[Tensor]]] = {}
        for k, v in data.items():
            if isinstance(v, list):
                X[k] = [to_device(i, self.device) for i in v]
            else:
                X[k] = to_device(v, self.device)
        y = (
            target.view(-1, 1).float()
            if self.method not in ["multiclass", "qregression", "multitarget"]
            else target
        )
        y = to_device(y, self.device)

        self.optimizer.zero_grad()

        y_pred = self.model(X)

        if self.model.is_tabnet:
            loss = self.loss_fn(y_pred[0], y) - self.lambda_sparse * y_pred[1]
            score = self._get_score(y_pred[0], y, is_train=True)
        else:
            loss = self.loss_fn(y_pred, y)
            score = self._get_score(y_pred, y, is_train=True)

        loss.backward()
        self.optimizer.step()

        self.train_running_loss += loss.item()
        avg_loss = self.train_running_loss / (batch_idx + 1)

        return score, avg_loss

    def _eval_epoch(
        self,
        eval_loader: DataLoader,
        epoch_logs: Dict[str, float],
    ) -> Tuple[Dict[str, float], Optional[float]]:
        self.callback_container.on_eval_begin()
        self.valid_running_loss = 0.0

        eval_steps = len(eval_loader)
        with trange(eval_steps, disable=self.verbose != 1) as v:
            for i, (data, targett) in zip(v, eval_loader):
                v.set_description("valid")
                val_score, val_loss = self._eval_step(data, targett, i)
                print_loss_and_metric(v, val_loss, val_score)

        epoch_logs = save_epoch_logs(epoch_logs, val_loss, val_score, "val")

        if self.reducelronplateau:
            if self.reducelronplateau_criterion == "loss":
                on_epoch_end_metric = val_loss
            else:
                on_epoch_end_metric = val_score[self.reducelronplateau_criterion]
        else:
            on_epoch_end_metric = None

        return epoch_logs, on_epoch_end_metric

    def _eval_step(
        self,
        data: Dict[str, Union[Tensor, List[Tensor]]],
        target: Tensor,
        batch_idx: int,
    ):
        self.model.eval()
        with torch.no_grad():
            X: Dict[str, Union[Tensor, List[Tensor]]] = {}
            for k, v in data.items():
                if isinstance(v, list):
                    X[k] = [to_device(i, self.device) for i in v]
                else:
                    X[k] = to_device(v, self.device)
            y = (
                target.view(-1, 1).float()
                if self.method not in ["multiclass", "qregression", "multitarget"]
                else target
            )
            y = to_device(y, self.device)

            y_pred = self.model(X)
            if self.model.is_tabnet:
                loss = self.loss_fn(y_pred[0], y) - self.lambda_sparse * y_pred[1]
                score = self._get_score(y_pred[0], y, is_train=False)
            else:
                score = self._get_score(y_pred, y, is_train=False)
                loss = self.loss_fn(y_pred, y)

            self.valid_running_loss += loss.item()
            avg_loss = self.valid_running_loss / (batch_idx + 1)

        self.model.train()
        return score, avg_loss

    def _get_score(
        self, y_pred: Tensor, y: Tensor, is_train: bool
    ) -> Optional[Dict[str, float]]:

        score = None
        metric = None

        if self.metric and not self.eval_metric:
            metric = self.metric
        elif self.metric and self.eval_metric:
            metric = self.metric if is_train else self.eval_metric
        elif not self.metric and self.eval_metric:
            metric = None if is_train else self.eval_metric

        if metric is not None:
            if self.method == "regression":
                score = metric(y_pred, y)
            if self.method == "binary":
                score = metric(torch.sigmoid(y_pred), y)
            if self.method == "qregression":
                score = metric(y_pred, y)
            if self.method == "multiclass":
                score = metric(F.softmax(y_pred, dim=1), y)
        return score

    def _predict(  # type: ignore[override, return]  # noqa: C901
        self,
        X_wide: Optional[np.ndarray] = None,
        X_tab: Optional[Union[np.ndarray, List[np.ndarray]]] = None,
        X_text: Optional[Union[np.ndarray, List[np.ndarray]]] = None,
        X_img: Optional[Union[np.ndarray, List[np.ndarray]]] = None,
        X_test: Optional[Dict[str, Union[np.ndarray, List[np.ndarray]]]] = None,
        batch_size: Optional[int] = None,
        uncertainty_granularity: int = 1000,
        uncertainty: bool = False,
    ) -> List:
        r"""Private method to avoid code repetition in predict and
        predict_proba. For parameter information, please, see the .predict()
        method documentation
        """
        if X_test is not None:
            test_set = WideDeepDataset(**X_test)  # type: ignore[arg-type]
        else:
            load_dict: Dict[str, Union[np.ndarray, List[np.ndarray]]] = {}
            if X_wide is not None:
                load_dict = {"X_wide": X_wide}
            if X_tab is not None:
                load_dict.update({"X_tab": X_tab})
            if X_text is not None:
                load_dict.update({"X_text": X_text})
            if X_img is not None:
                load_dict.update({"X_img": X_img})
            test_set = WideDeepDataset(**load_dict)  # type: ignore[arg-type]

        if not hasattr(self, "batch_size"):
            assert batch_size is not None, (
                "'batch_size' has not be previosly set in this Trainer and must be"
                " specified via the 'batch_size' argument in this predict call"
            )
            self.batch_size = batch_size

        test_loader = DataLoader(
            dataset=test_set,
            batch_size=self.batch_size,
            num_workers=self.num_workers,
            shuffle=False,
        )
        test_steps = (len(test_loader.dataset) // test_loader.batch_size) + 1  # type: ignore[arg-type]

        self.model.eval()
        preds_l = []

        if uncertainty:
            for m in self.model.modules():
                if m.__class__.__name__.startswith("Dropout"):
                    m.train()
            prediction_iters = uncertainty_granularity
        else:
            prediction_iters = 1

        with torch.no_grad():
            with trange(uncertainty_granularity, disable=uncertainty is False) as t:
                for _, _ in zip(t, range(prediction_iters)):
                    t.set_description("predict_UncertaintyIter")

                    with trange(
                        test_steps, disable=self.verbose != 1 or uncertainty is True
                    ) as tt:
                        for _, data in zip(tt, test_loader):
                            tt.set_description("predict")
                            X: Dict[str, Union[Tensor, List[Tensor]]] = {}
                            for k, v in data.items():
                                if isinstance(v, list):
                                    X[k] = [to_device(i, self.device) for i in v]
                                else:
                                    X[k] = to_device(v, self.device)
                            preds = (
                                self.model(X)
                                if not self.model.is_tabnet
                                else self.model(X)[0]
                            )
                            if self.method == "binary":
                                preds = torch.sigmoid(preds)
                            if self.method == "multiclass":
                                preds = F.softmax(preds, dim=1)
                            if self.method == "regression" and isinstance(
                                self.loss_fn, ZILNLoss
                            ):
                                preds = self._predict_ziln(preds)
                            preds = preds.cpu().data.numpy()
                            preds_l.append(preds)
        self.model.train()
        return preds_l

    @staticmethod
    def _predict_ziln(preds: Tensor) -> Tensor:
        # Legacy implementation. It will be removed in future versions
        """Calculates predicted mean of zero inflated lognormal logits.

        Adjusted implementaion of `code
        <https://github.com/google/lifetime_value/blob/master/lifetime_value/zero_inflated_lognormal.py>`

        Arguments:
            preds: [batch_size, 3] tensor of logits.
        Returns:
            ziln_preds: [batch_size, 1] tensor of predicted mean.
        """
        positive_probs = torch.sigmoid(preds[..., :1])
        loc = preds[..., 1:2]
        scale = F.softplus(preds[..., 2:])
        ziln_preds = positive_probs * torch.exp(loc + 0.5 * torch.square(scale))
        return ziln_preds

    @staticmethod
    def _extract_kwargs(kwargs):
        dataloader_params = [
            "shuffle",
            "sampler",
            "batch_sampler",
            "num_workers",
            "collate_fn",
            "pin_memory",
            "drop_last",
            "timeout",
            "worker_init_fn",
            "generator",
            "prefetch_factor",
            "persistent_workers",
            "oversample_mul",
        ]
        finetune_params = [
            "n_epochs",
            "finetune_epochs",
            "warmup_epochs",
            "max_lr",
            "finetune_max_lr",
            "warmup_max_lr",
            "routine",
            "deeptabular_gradual",
            "deeptabular_layers",
            "deeptabular_max_lr",
            "deeptext_gradual",
            "deeptext_layers",
            "deeptext_max_lr",
            "deepimage_gradual",
            "deepimage_layers",
            "deepimage_max_lr",
        ]

        dataloader_args, finetune_args = {}, {}
        for k, v in kwargs.items():
            if k in dataloader_params:
                dataloader_args[k] = v
            if k in finetune_params:
                finetune_args[k] = v

        return dataloader_args, finetune_args

fit

fit(X_wide=None, X_tab=None, X_text=None, X_img=None, X_train=None, X_val=None, val_split=None, target=None, n_epochs=1, validation_freq=1, batch_size=32, train_dataloader=None, eval_dataloader=None, feature_importance_sample_size=None, finetune=False, **kwargs)

Fit method.

The input datasets can be passed either directly via numpy arrays (X_wide, X_tab, X_text or X_img) or alternatively, in dictionaries (X_train or X_val).

Parameters:

Name Type Description Default
X_wide Optional[ndarray]

Input for the wide model component. See pytorch_widedeep.preprocessing.WidePreprocessor

None
X_tab Optional[Union[ndarray, List[ndarray]]]

Input for the deeptabular model component. See pytorch_widedeep.preprocessing.TabPreprocessor. If multiple tabular models are used for different columns, this should be a list of numpy arrays

None
X_text Optional[Union[ndarray, List[ndarray]]]

Input for the deeptext model component. See pytorch_widedeep.preprocessing.TextPreprocessor. If multiple text columns/models are used, this should be a list of numpy arrays

None
X_img Optional[Union[ndarray, List[ndarray]]]

Input for the deepimage model component. See pytorch_widedeep.preprocessing.ImagePreprocessor. If multiple image columns/models are used, this should be a list of numpy arrays

None
X_train Optional[Dict[str, Union[ndarray, List[ndarray]]]]

The training dataset can also be passed in a dictionary. Keys are 'X_wide', 'X_tab', 'X_text', 'X_img' and 'target'. Values are the corresponding matrices. Note that of multiple text or image columns/models are used, the corresponding values should be lists of numpy arrays

None
X_val Optional[Dict[str, Union[ndarray, List[ndarray]]]]

The validation dataset can also be passed in a dictionary. Keys are 'X_wide', 'X_tab', 'X_text', 'X_img' and 'target'. Values are the corresponding matrices. Note that of multiple text or image columns/models are used, the corresponding values should be lists of numpy arrays

None
val_split Optional[float]

train/val split fraction

None
target Optional[ndarray]

target values

None
n_epochs int

number of epochs

1
validation_freq int

epochs validation frequency

1
batch_size int

batch size

32
custom_dataloader

object of class torch.utils.data.DataLoader. Available predefined dataloaders are in pytorch-widedeep.dataloaders.If None, a standard torch DataLoader is used.

required
finetune bool

fine-tune individual model components. This functionality can also be used to 'warm-up' (and hence the alias warmup) individual components before the joined training starts, and hence its alias. See the Examples folder in the repo for more details

pytorch_widedeep implements 3 fine-tune routines.

  • fine-tune all trainable layers at once. This routine is inspired by the work of Howard & Sebastian Ruder 2018 in their ULMfit paper. Using a Slanted Triangular learing (see Leslie N. Smith paper ) , the process is the following: i) the learning rate will gradually increase for 10% of the training steps from max_lr/10 to max_lr. ii) It will then gradually decrease to max_lr/10 for the remaining 90% of the steps. The optimizer used in the process is Adam.

and two gradual fine-tune routines, where only certain layers are trained at a time.

  • The so called Felbo gradual fine-tune rourine, based on the the Felbo et al., 2017 DeepEmoji paper.
  • The Howard routine based on the work of Howard & Sebastian Ruder 2018 in their ULMfit paper.

For details on how these routines work, please see the Examples section in this documentation and the Examples folder in the repo.
Param Alias: warmup

False

Other Parameters:

Name Type Description
**kwargs

Other keyword arguments are:

  • DataLoader related parameters:
    For example, sampler, batch_sampler, collate_fn, etc. Please, see the pytorch DataLoader docs for details.

  • Finetune related parameters:
    see the source code at pytorch_widedeep._finetune. Namely, these are:

    • finetune_epochs (int): number of epochs use for fine tuning
    • finetune_max_lr (float): max lr during fine tuning
    • routine (str): one of 'howard' or 'felbo'
    • deeptabular_gradual (bool): boolean indicating if the deeptabular component will be fine tuned gradually
    • deeptabular_layers (Optional[Union[List[nn.Module], List[List[nn.Module]]]]): List of pytorch modules indicating the layers of the deeptabular that will be fine tuned
    • deeptabular_max_lr (Union[float, List[float]]): max lr for the deeptabular componet during fine tuning
    • deeptext_gradual (bool): same as deeptabular_gradual but for the deeptext component
    • deeptext_layers (Optional[Union[List[nn.Module], List[List[nn.Module]]]]): same as deeptabular_gradual but for the deeptext component. If there are multiple text columns/models, this should be a list of lists
    • deeptext_max_lr (Union[float, List[float]]): same as deeptabular_gradual but for the deeptext component If there are multiple text columns/models, this should be a list of floats
    • deepimage_gradual (bool): same as deeptext_layers but for the deepimage component
    • deepimage_layers (Optional[Union[List[nn.Module], List[List[nn.Module]]]]): same as deeptext_layers but for the deepimage component
    • deepimage_max_lr (Union[float, List[float]]): same as deeptext_layers but for the deepimage component

Examples:

For a series of comprehensive examples on how to use the fit method, please see the Examples folder in the repo

Source code in pytorch_widedeep/training/trainer.py
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
@alias("finetune", ["warmup"])
@alias("train_dataloader", ["custom_dataloader"])
@alias("eval_dataloader", ["custom_eval_dataloader"])
def fit(  # noqa: C901
    self,
    X_wide: Optional[np.ndarray] = None,
    X_tab: Optional[Union[np.ndarray, List[np.ndarray]]] = None,
    X_text: Optional[Union[np.ndarray, List[np.ndarray]]] = None,
    X_img: Optional[Union[np.ndarray, List[np.ndarray]]] = None,
    X_train: Optional[Dict[str, Union[np.ndarray, List[np.ndarray]]]] = None,
    X_val: Optional[Dict[str, Union[np.ndarray, List[np.ndarray]]]] = None,
    val_split: Optional[float] = None,
    target: Optional[np.ndarray] = None,
    n_epochs: int = 1,
    validation_freq: int = 1,
    batch_size: int = 32,
    train_dataloader: Optional[CustomDataLoader] = None,
    eval_dataloader: Optional[CustomDataLoader] = None,
    feature_importance_sample_size: Optional[int] = None,
    finetune: bool = False,
    **kwargs,
):
    r"""Fit method.

    The input datasets can be passed either directly via numpy arrays
    (`X_wide`, `X_tab`, `X_text` or `X_img`) or alternatively, in
    dictionaries (`X_train` or `X_val`).

    Parameters
    ----------
    X_wide: np.ndarray, Optional. default=None
        Input for the `wide` model component.
        See `pytorch_widedeep.preprocessing.WidePreprocessor`
    X_tab: np.ndarray, Optional. default=None
        Input for the `deeptabular` model component.
        See `pytorch_widedeep.preprocessing.TabPreprocessor`. If multiple
        tabular models are used for different columns, this should be a
        list of numpy arrays
    X_text: Union[np.ndarray, List[np.ndarray]], Optional. default=None
        Input for the `deeptext` model component.
        See `pytorch_widedeep.preprocessing.TextPreprocessor`.
        If multiple text columns/models are used, this should be a list of
        numpy arrays
    X_img: np.ndarray, Optional. default=None
        Input for the `deepimage` model component.
        See `pytorch_widedeep.preprocessing.ImagePreprocessor`.
        If multiple image columns/models are used, this should be a list of
        numpy arrays
    X_train: Dict, Optional. default=None
        The training dataset can also be passed in a dictionary. Keys are
        _'X_wide'_, _'X_tab'_, _'X_text'_, _'X_img'_ and _'target'_. Values
        are the corresponding matrices. Note that of multiple text or image
        columns/models are used, the corresponding values should be lists
        of numpy arrays
    X_val: Dict, Optional. default=None
        The validation dataset can also be passed in a dictionary. Keys
        are _'X_wide'_, _'X_tab'_, _'X_text'_, _'X_img'_ and _'target'_.
        Values are the corresponding matrices. Note that of multiple text
        or image columns/models are used, the corresponding values should
        be lists of numpy arrays
    val_split: float, Optional. default=None
        train/val split fraction
    target: np.ndarray, Optional. default=None
        target values
    n_epochs: int, default=1
        number of epochs
    validation_freq: int, default=1
        epochs validation frequency
    batch_size: int, default=32
        batch size
    custom_dataloader: `DataLoader`, Optional, default=None
        object of class `torch.utils.data.DataLoader`. Available
        predefined dataloaders are in `pytorch-widedeep.dataloaders`.If
        `None`, a standard torch `DataLoader` is used.
    finetune: bool, default=False
        fine-tune individual model components. This functionality can also
        be used to 'warm-up' (and hence the alias `warmup`) individual
        components before the joined training starts, and hence its
        alias. See the Examples folder in the repo for more details

        `pytorch_widedeep` implements 3 fine-tune routines.

        - fine-tune all trainable layers at once. This routine is
          inspired by the work of Howard & Sebastian Ruder 2018 in their
          [ULMfit paper](https://arxiv.org/abs/1801.06146). Using a
          Slanted Triangular learing (see
          [Leslie N. Smith paper](https://arxiv.org/pdf/1506.01186.pdf) ) ,
          the process is the following: *i*) the learning rate will
          gradually increase for 10% of the training steps from max_lr/10
          to max_lr. *ii*) It will then gradually decrease to max_lr/10
          for the remaining 90% of the steps. The optimizer used in the
          process is `Adam`.

        and two gradual fine-tune routines, where only certain layers are
        trained at a time.

        - The so called `Felbo` gradual fine-tune rourine, based on the the
          Felbo et al., 2017 [DeepEmoji paper](https://arxiv.org/abs/1708.00524).
        - The `Howard` routine based on the work of Howard & Sebastian Ruder 2018 in their
          [ULMfit paper](https://arxiv.org/abs/1801.06146>).

        For details on how these routines work, please see the Examples
        section in this documentation and the Examples folder in the repo. <br/>
        Param Alias: `warmup`

    Other Parameters
    ----------------
    **kwargs:
        Other keyword arguments are:

        - **DataLoader related parameters**:<br/>
            For example,  `sampler`, `batch_sampler`, `collate_fn`, etc.
            Please, see the pytorch
            [DataLoader docs](https://pytorch.org/docs/stable/data.html#torch.utils.data.DataLoader)
            for details.

        - **Finetune related parameters**:<br/>
            see the source code at `pytorch_widedeep._finetune`. Namely, these are:

            - `finetune_epochs` (`int`):
                number of epochs use for fine tuning
            - `finetune_max_lr` (`float`):
               max lr during fine tuning
            - `routine` (`str`):
               one of _'howard'_ or _'felbo'_
            - `deeptabular_gradual` (`bool`):
               boolean indicating if the `deeptabular` component will be fine tuned gradually
            - `deeptabular_layers` (`Optional[Union[List[nn.Module], List[List[nn.Module]]]]`):
               List of pytorch modules indicating the layers of the
               `deeptabular` that will be fine tuned
            - `deeptabular_max_lr` (`Union[float, List[float]]`):
               max lr for the `deeptabular` componet during fine tuning
            - `deeptext_gradual` (`bool`):
               same as `deeptabular_gradual` but for the `deeptext` component
            - `deeptext_layers` (`Optional[Union[List[nn.Module], List[List[nn.Module]]]]`):
               same as `deeptabular_gradual` but for the `deeptext` component.
               If there are multiple text columns/models, this should be a list of lists
            - `deeptext_max_lr` (`Union[float, List[float]]`):
               same as `deeptabular_gradual` but for the `deeptext` component
               If there are multiple text columns/models, this should be a list of floats
            - `deepimage_gradual` (`bool`):
               same as `deeptext_layers` but for the `deepimage` component
            - `deepimage_layers` (`Optional[Union[List[nn.Module], List[List[nn.Module]]]]`):
               same as `deeptext_layers` but for the `deepimage` component
            - `deepimage_max_lr` (`Union[float, List[float]]`):
                same as `deeptext_layers` but for the `deepimage` component

    Examples
    --------

    For a series of comprehensive examples on how to use the `fit` method, please see the
    [Examples](https://github.com/jrzaurin/pytorch-widedeep/tree/master/examples)
    folder in the repo
    """
    dataloader_args, finetune_args = self._extract_kwargs(kwargs)
    self.batch_size = batch_size
    train_set, eval_set = wd_train_val_split(
        self.seed,
        self.method,  # type: ignore
        X_wide,
        X_tab,
        X_text,
        X_img,
        X_train,
        X_val,
        val_split,
        target,
        self.transforms,
    )
    train_loader = self._set_dataloader(
        train_dataloader, train_set, batch_size, dataloader_args
    )
    eval_loader = (
        self._set_dataloader(eval_dataloader, eval_set, batch_size, dataloader_args)
        if eval_set is not None
        else None
    )

    if finetune:
        self.with_finetuning: bool = True
        self._do_finetune(train_loader, **finetune_args)
        if self.verbose:
            print(
                "Fine-tuning (or warmup) of individual components completed. "
                "Training the whole model for {} epochs".format(n_epochs)
            )
    else:
        self.with_finetuning = False

    self.callback_container.on_train_begin(
        {
            "batch_size": batch_size,
            "train_steps": len(train_loader),
            "n_epochs": n_epochs,
        }
    )
    for epoch in range(n_epochs):
        epoch_logs = self._train_epoch(train_loader, epoch)
        if eval_loader is not None and epoch % validation_freq == (
            validation_freq - 1
        ):
            epoch_logs, on_epoch_end_metric = self._eval_epoch(
                eval_loader, epoch_logs
            )
        else:
            on_epoch_end_metric = None
            if self.reducelronplateau:
                raise NotImplementedError(
                    "ReduceLROnPlateau scheduler can be used only with validation data."
                )
        self.callback_container.on_epoch_end(epoch, epoch_logs, on_epoch_end_metric)
        if self.early_stop:
            # self.callback_container.on_train_end(epoch_logs)
            break

    self.callback_container.on_train_end(epoch_logs)
    if feature_importance_sample_size is not None:
        self.feature_importance = FeatureImportance(
            self.device, feature_importance_sample_size
        ).feature_importance(train_loader, self.model)
    self._restore_best_weights()
    self.model.train()

predict

predict(X_wide=None, X_tab=None, X_text=None, X_img=None, X_test=None, batch_size=None)

Returns the predictions

The input datasets can be passed either directly via numpy arrays (X_wide, X_tab, X_text or X_img) or alternatively, in a dictionary (X_test)

Parameters:

Name Type Description Default
X_wide Optional[ndarray]

Input for the wide model component. See pytorch_widedeep.preprocessing.WidePreprocessor

None
X_tab Optional[Union[ndarray, List[ndarray]]]

Input for the deeptabular model component. See pytorch_widedeep.preprocessing.TabPreprocessor

None
X_text Optional[Union[ndarray, List[ndarray]]]

Input for the deeptext model component. See pytorch_widedeep.preprocessing.TextPreprocessor

None
X_img Optional[Union[ndarray, List[ndarray]]]

Input for the deepimage model component. See pytorch_widedeep.preprocessing.ImagePreprocessor

None
X_test Optional[Dict[str, Union[ndarray, List[ndarray]]]]

The test dataset can also be passed in a dictionary. Keys are X_wide, 'X_tab', 'X_text', 'X_img' and 'target'. Values are the corresponding matrices.

None
batch_size Optional[int]

If a trainer is used to predict after having trained a model, the batch_size needs to be defined as it will not be defined as the Trainer is instantiated

None

Returns:

Type Description
np.ndarray:

array with the predictions

Source code in pytorch_widedeep/training/trainer.py
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
def predict(  # type: ignore[override, return]
    self,
    X_wide: Optional[np.ndarray] = None,
    X_tab: Optional[Union[np.ndarray, List[np.ndarray]]] = None,
    X_text: Optional[Union[np.ndarray, List[np.ndarray]]] = None,
    X_img: Optional[Union[np.ndarray, List[np.ndarray]]] = None,
    X_test: Optional[Dict[str, Union[np.ndarray, List[np.ndarray]]]] = None,
    batch_size: Optional[int] = None,
) -> np.ndarray:
    r"""Returns the predictions

    The input datasets can be passed either directly via numpy arrays
    (`X_wide`, `X_tab`, `X_text` or `X_img`) or alternatively, in
    a dictionary (`X_test`)


    Parameters
    ----------
    X_wide: np.ndarray, Optional. default=None
        Input for the `wide` model component.
        See `pytorch_widedeep.preprocessing.WidePreprocessor`
    X_tab: np.ndarray or List[np.ndarray], Optional. default=None
        Input for the `deeptabular` model component.
        See `pytorch_widedeep.preprocessing.TabPreprocessor`
    X_text: np.ndarray or List[np.ndarray], Optional. default=None
        Input for the `deeptext` model component.
        See `pytorch_widedeep.preprocessing.TextPreprocessor`
    X_img: np.ndarray or List[np.ndarray], Optional. default=None
        Input for the `deepimage` model component.
        See `pytorch_widedeep.preprocessing.ImagePreprocessor`
    X_test: Dict, Optional. default=None
        The test dataset can also be passed in a dictionary. Keys are
        `X_wide`, _'X_tab'_, _'X_text'_, _'X_img'_ and _'target'_. Values
        are the corresponding matrices.
    batch_size: int, default = 256
        If a trainer is used to predict after having trained a model, the
        `batch_size` needs to be defined as it will not be defined as
        the `Trainer` is instantiated

    Returns
    -------
    np.ndarray:
        array with the predictions
    """
    preds_l = self._predict(X_wide, X_tab, X_text, X_img, X_test, batch_size)
    if self.method == "regression":
        return np.vstack(preds_l).squeeze(1)
    if self.method == "binary":
        preds = np.vstack(preds_l).squeeze(1)
        return (preds > 0.5).astype("int")
    if self.method == "qregression":
        return np.vstack(preds_l)
    if self.method == "multiclass":
        preds = np.vstack(preds_l)
        return np.argmax(preds, 1)  # type: ignore[return-value]
    if self.method == "multitarget":
        if self.loss_fn.__class__.__name__ in [
            "MultiTargetClassificationLoss",
            "MutilTargetRegressionAndClassificationLoss",
        ]:
            raise ValueError(
                "MultiTargetClassificationLoss and MutilTargetRegressionAndClassificationLoss "
                "are not supported by predict method. Please use predict_proba method instead."
            )
        return np.vstack(preds_l)

predict_uncertainty

predict_uncertainty(X_wide=None, X_tab=None, X_text=None, X_img=None, X_test=None, batch_size=None, uncertainty_granularity=1000)

Returns the predicted ucnertainty of the model for the test dataset using a Monte Carlo method during which dropout layers are activated in the evaluation/prediction phase and each sample is predicted N times (uncertainty_granularity times).

This is based on Dropout as a Bayesian Approximation: Representing Model Uncertainty in Deep Learning.

Parameters:

Name Type Description Default
X_wide Optional[ndarray]

Input for the wide model component. See pytorch_widedeep.preprocessing.WidePreprocessor

None
X_tab Optional[Union[ndarray, List[ndarray]]]

Input for the deeptabular model component. See pytorch_widedeep.preprocessing.TabPreprocessor

None
X_text Optional[Union[ndarray, List[ndarray]]]

Input for the deeptext model component. See pytorch_widedeep.preprocessing.TextPreprocessor

None
X_img Optional[Union[ndarray, List[ndarray]]]

Input for the deepimage model component. See pytorch_widedeep.preprocessing.ImagePreprocessor

None
X_test Optional[Dict[str, Union[ndarray, List[ndarray]]]]

The test dataset can also be passed in a dictionary. Keys are 'X_wide', 'X_tab', 'X_text', 'X_img' and 'target'. Values are the corresponding matrices.

None
batch_size Optional[int]

If a trainer is used to predict after having trained a model, the batch_size needs to be defined as it will not be defined as the Trainer is instantiated

None
uncertainty_granularity int

number of times the model does prediction for each sample

1000

Returns:

Type Description
np.ndarray:
  • if method = regression, it will return an array with (max, min, mean, stdev) values for each sample.
  • if method = binary it will return an array with (mean_cls_0_prob, mean_cls_1_prob, predicted_cls) for each sample.
  • if method = multiclass it will return an array with (mean_cls_0_prob, mean_cls_1_prob, mean_cls_2_prob, ... , predicted_cls) values for each sample.
Source code in pytorch_widedeep/training/trainer.py
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
def predict_uncertainty(  # type: ignore[return]
    self,
    X_wide: Optional[np.ndarray] = None,
    X_tab: Optional[Union[np.ndarray, List[np.ndarray]]] = None,
    X_text: Optional[Union[np.ndarray, List[np.ndarray]]] = None,
    X_img: Optional[Union[np.ndarray, List[np.ndarray]]] = None,
    X_test: Optional[Dict[str, Union[np.ndarray, List[np.ndarray]]]] = None,
    batch_size: Optional[int] = None,
    uncertainty_granularity: int = 1000,
) -> np.ndarray:
    r"""Returns the predicted ucnertainty of the model for the test dataset
    using a Monte Carlo method during which dropout layers are activated
    in the evaluation/prediction phase and each sample is predicted N
    times (`uncertainty_granularity` times).

    This is based on
    [Dropout as a Bayesian Approximation: Representing
    Model Uncertainty in Deep Learning](https://arxiv.org/abs/1506.02142?context=stat).

    Parameters
    ----------
    X_wide: np.ndarray, Optional. default=None
        Input for the `wide` model component.
        See `pytorch_widedeep.preprocessing.WidePreprocessor`
    X_tab: np.ndarray or List[np.ndarray], Optional. default=None
        Input for the `deeptabular` model component.
        See `pytorch_widedeep.preprocessing.TabPreprocessor`
    X_text: np.ndarray or List[np.ndarray], Optional. default=None
        Input for the `deeptext` model component.
        See `pytorch_widedeep.preprocessing.TextPreprocessor`
    X_img: np.ndarray or List[np.ndarray], Optional. default=None
        Input for the `deepimage` model component.
        See `pytorch_widedeep.preprocessing.ImagePreprocessor`
    X_test: Dict, Optional. default=None
        The test dataset can also be passed in a dictionary. Keys are
        _'X_wide'_, _'X_tab'_, _'X_text'_, _'X_img'_ and _'target'_. Values
        are the corresponding matrices.
    batch_size: int, default = 256
        If a trainer is used to predict after having trained a model, the
        `batch_size` needs to be defined as it will not be defined as
        the `Trainer` is instantiated
    uncertainty_granularity: int default = 1000
        number of times the model does prediction for each sample

    Returns
    -------
    np.ndarray:
        - if `method = regression`, it will return an array with `(max, min, mean, stdev)`
          values for each sample.
        - if `method = binary` it will return an array with
          `(mean_cls_0_prob, mean_cls_1_prob, predicted_cls)` for each sample.
        - if `method = multiclass` it will return an array with
          `(mean_cls_0_prob, mean_cls_1_prob, mean_cls_2_prob, ... , predicted_cls)`
          values for each sample.

    """
    preds_l = self._predict(
        X_wide,
        X_tab,
        X_text,
        X_img,
        X_test,
        batch_size,
        uncertainty_granularity,
        uncertainty=True,
    )
    preds = np.vstack(preds_l)
    samples_num = int(preds.shape[0] / uncertainty_granularity)
    if self.method == "regression":
        preds = preds.squeeze(1)
        preds = preds.reshape((uncertainty_granularity, samples_num))
        return np.array(
            (
                preds.max(axis=0),
                preds.min(axis=0),
                preds.mean(axis=0),
                preds.std(axis=0),
            )
        ).T
    if self.method == "qregression":
        raise ValueError(
            "Currently predict_uncertainty is not supported for qregression method"
        )
    if self.method == "binary":
        preds = preds.squeeze(1)
        preds = preds.reshape((uncertainty_granularity, samples_num))
        preds = preds.mean(axis=0)
        probs = np.zeros([preds.shape[0], 3])
        probs[:, 0] = 1 - preds
        probs[:, 1] = preds
        return probs
    if self.method == "multiclass":
        preds = preds.reshape(uncertainty_granularity, samples_num, preds.shape[1])
        preds = preds.mean(axis=0)
        preds = np.hstack((preds, np.vstack(np.argmax(preds, 1))))
        return preds

    if self.method == "multitarget":
        raise ValueError(
            "Currently predict_uncertainty is not supported for multitarget method"
        )

predict_proba

predict_proba(X_wide=None, X_tab=None, X_text=None, X_img=None, X_test=None, batch_size=None)

Returns the predicted probabilities for the test dataset for binary and multiclass methods

The input datasets can be passed either directly via numpy arrays (X_wide, X_tab, X_text or X_img) or alternatively, in a dictionary (X_test)

Parameters:

Name Type Description Default
X_wide Optional[ndarray]

Input for the wide model component. See pytorch_widedeep.preprocessing.WidePreprocessor

None
X_tab Optional[Union[ndarray, List[ndarray]]]

Input for the deeptabular model component. See pytorch_widedeep.preprocessing.TabPreprocessor

None
X_text Optional[Union[ndarray, List[ndarray]]]

Input for the deeptext model component. See pytorch_widedeep.preprocessing.TextPreprocessor

None
X_img Optional[Union[ndarray, List[ndarray]]]

Input for the deepimage model component. See pytorch_widedeep.preprocessing.ImagePreprocessor

None
X_test Optional[Dict[str, Union[ndarray, List[ndarray]]]]

The test dataset can also be passed in a dictionary. Keys are X_wide, 'X_tab', 'X_text', 'X_img' and 'target'. Values are the corresponding matrices.

None
batch_size Optional[int]

If a trainer is used to predict after having trained a model, the batch_size needs to be defined as it will not be defined as the Trainer is instantiated

None

Returns:

Type Description
ndarray

array with the probabilities per class

Source code in pytorch_widedeep/training/trainer.py
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
def predict_proba(  # type: ignore[override, return]  # noqa: C901
    self,
    X_wide: Optional[np.ndarray] = None,
    X_tab: Optional[Union[np.ndarray, List[np.ndarray]]] = None,
    X_text: Optional[Union[np.ndarray, List[np.ndarray]]] = None,
    X_img: Optional[Union[np.ndarray, List[np.ndarray]]] = None,
    X_test: Optional[Dict[str, Union[np.ndarray, List[np.ndarray]]]] = None,
    batch_size: Optional[int] = None,
) -> np.ndarray:
    r"""Returns the predicted probabilities for the test dataset for  binary
    and multiclass methods

    The input datasets can be passed either directly via numpy arrays
    (`X_wide`, `X_tab`, `X_text` or `X_img`) or alternatively, in
    a dictionary (`X_test`)

    Parameters
    ----------
    X_wide: np.ndarray, Optional. default=None
        Input for the `wide` model component.
        See `pytorch_widedeep.preprocessing.WidePreprocessor`
    X_tab: np.ndarray or List[np.ndarray], Optional. default=None
        Input for the `deeptabular` model component.
        See `pytorch_widedeep.preprocessing.TabPreprocessor`
    X_text: np.ndarray or List[np.ndarray], Optional. default=None
        Input for the `deeptext` model component.
        See `pytorch_widedeep.preprocessing.TextPreprocessor`
    X_img: np.ndarray or List[np.ndarray], Optional. default=None
        Input for the `deepimage` model component.
        See `pytorch_widedeep.preprocessing.ImagePreprocessor`
    X_test: Dict, Optional. default=None
        The test dataset can also be passed in a dictionary. Keys are
        `X_wide`, _'X_tab'_, _'X_text'_, _'X_img'_ and _'target'_. Values
        are the corresponding matrices.
    batch_size: int, default = 256
        If a trainer is used to predict after having trained a model, the
        `batch_size` needs to be defined as it will not be defined as
        the `Trainer` is instantiated

    Returns
    -------
    np.ndarray
        array with the probabilities per class
    """

    preds_l = self._predict(X_wide, X_tab, X_text, X_img, X_test, batch_size)
    if self.method == "binary":
        preds = np.vstack(preds_l).squeeze(1)
        probs = np.zeros([preds.shape[0], 2])
        probs[:, 0] = 1 - preds
        probs[:, 1] = preds
        return probs
    if self.method == "multiclass":
        return np.vstack(preds_l)
    if self.method == "multitarget":
        return np.vstack(preds_l)

save

save(path, save_state_dict=False, save_optimizer=False, model_filename='wd_model.pt')

Saves the model, training and evaluation history, and the feature_importance attribute (if the deeptabular component is a Tabnet model) to disk

The Trainer class is built so that it 'just' trains a model. With that in mind, all the torch related parameters (such as optimizers, learning rate schedulers, initializers, etc) have to be defined externally and then passed to the Trainer. As a result, the Trainer does not generate any attribute or additional data products that need to be saved other than the model object itself, which can be saved as any other torch model (e.g. torch.save(model, path)).

The exception is Tabnet. If the deeptabular component is a Tabnet model, an attribute (a dict) called feature_importance will be created at the end of the training process. Therefore, a save method was created that will save the feature importance dictionary to a json file and, since we are here, the model weights, training history and learning rate history.

Parameters:

Name Type Description Default
path str

path to the directory where the model and the feature importance attribute will be saved.

required
save_state_dict bool

Boolean indicating whether to save directly the model (and optimizer) or the model's (and optimizer's) state dictionary

False
save_optimizer bool

Boolean indicating whether to save the optimizer

False
model_filename str

filename where the model weights will be store

'wd_model.pt'
Source code in pytorch_widedeep/training/trainer.py
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
def save(
    self,
    path: str,
    save_state_dict: bool = False,
    save_optimizer: bool = False,
    model_filename: str = "wd_model.pt",
):
    r"""Saves the model, training and evaluation history, and the
    `feature_importance` attribute (if the `deeptabular` component is a
    Tabnet model) to disk

    The `Trainer` class is built so that it 'just' trains a model. With
    that in mind, all the torch related parameters (such as optimizers,
    learning rate schedulers, initializers, etc) have to be defined
    externally and then passed to the `Trainer`. As a result, the
    `Trainer` does not generate any attribute or additional data
    products that need to be saved other than the `model` object itself,
    which can be saved as any other torch model (e.g. `torch.save(model,
    path)`).

    The exception is Tabnet. If the `deeptabular` component is a Tabnet
    model, an attribute (a dict) called `feature_importance` will be
    created at the end of the training process. Therefore, a `save`
    method was created that will save the feature importance dictionary
    to a json file and, since we are here, the model weights, training
    history and learning rate history.

    Parameters
    ----------
    path: str
        path to the directory where the model and the feature importance
        attribute will be saved.
    save_state_dict: bool, default = False
        Boolean indicating whether to save directly the model
        (and optimizer) or the model's (and optimizer's) state
        dictionary
    save_optimizer: bool, default = False
        Boolean indicating whether to save the optimizer
    model_filename: str, Optional, default = "wd_model.pt"
        filename where the model weights will be store
    """

    self._save_history(path)

    self._save_model_and_optimizer(
        path, save_state_dict, save_optimizer, model_filename
    )

    if self.model.is_tabnet:
        with open(Path(path) / "feature_importance.json", "w") as fi:
            json.dump(self.feature_importance, fi)